





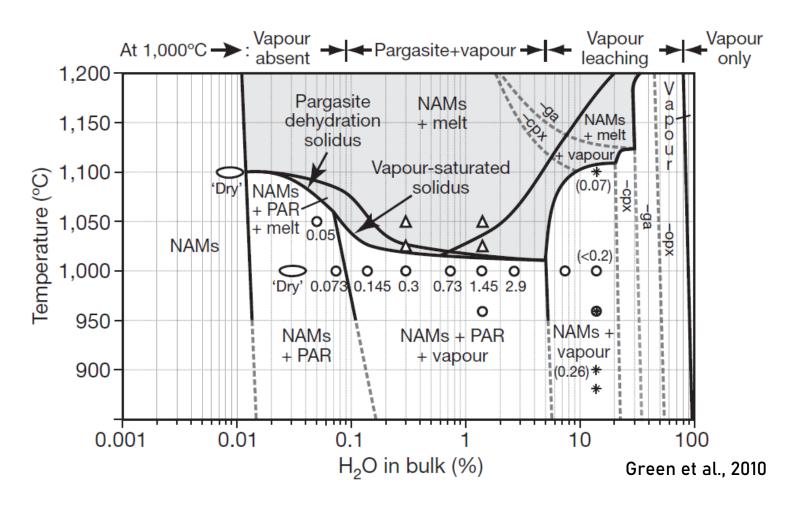




# 'Water' content as a tool to estimate rheological differences in the lithosphere of young extensional basins

Nóra Liptai<sup>1,2</sup>, Thomas P. Lange<sup>1,3</sup>, Levente Patkó<sup>1,3,4</sup>, Márta Berkesi<sup>1,3</sup>, Csaba Szabó<sup>2,3</sup>, István J. Kovács<sup>1,2</sup>

<sup>1</sup>MTA CSFK Lendület Pannon LitH<sub>2</sub>Oscope Research Group, Geodetic and Geophysical Institute, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, Sopron, Hungary <sup>2</sup>Geodetic and Geophysical Institute, Research Centre for Astronomy and Earth Sciences, Sopron, Hungary <sup>3</sup>Lithosphere Fluid Research Laboratory, Institute of Geography and Earth Sciences, Eötvös Loránd University, Budapest, Hungary



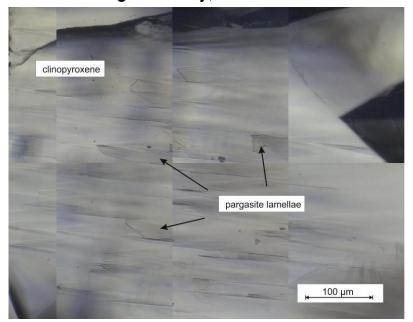

<sup>4</sup>Isotope Climatology and Environmental Research Centre, Institute for Nuclear Research, Debrecen, Hungary

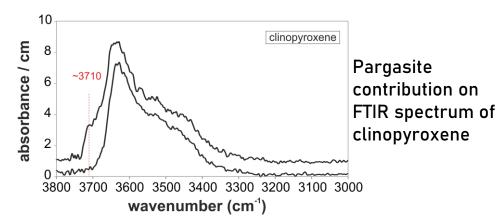


## Presence of 'water' in the upper mantle

- H<sub>2</sub>O in fluid/melt inclusions
- Structurally bound hydroxyl in mineral structures
  - Volatile-bearing mantle minerals (e.g., pargasite, phlogopite) - ~2 wt.%
  - Nominally anhydrous mantle minerals (olivine, pyroxenes) – tens to hundreds of wt. ppm




The upper limit of pargasite stability:


1050-1150°C or ~90-100 km depending on the lithospheric composition (fertility)



## Pargasite stability

- Interstitial grains
- Lamella in pyroxenes (exsolving upon entering stability)

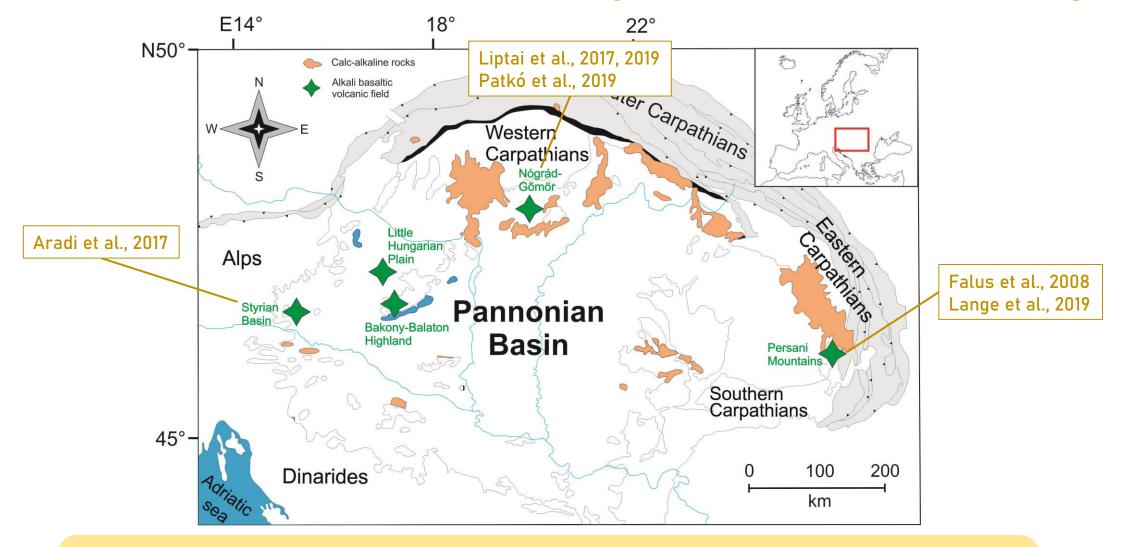




## Outside pargasite stability

#### 'Water' appears as:

- Aqueous phase (e.g., in fluid inclusions)
- Dissolved in incipient melt
- Partitioning in nominally anhydrous minerals (NAMs) as H<sup>+</sup> in cation vacancies




## Influence on rheological properties (hydrolitic weakening):

- Partial melting temperature
- Effective viscosity
- Electrical conductivity / resistivity



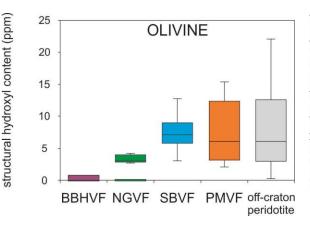
## Water in the xenoliths of the Carpathian-Pannonian region

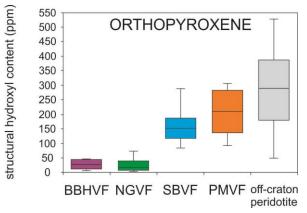


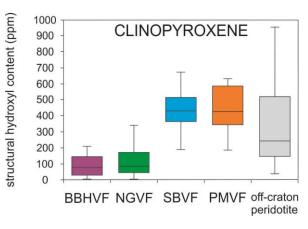
Late Miocene - Pleistocene xenolith-bearing alkali basalt localities:

'Marginal' locations: Styrian Basin, Perşani Mountains (in the vicinity of subduction zones)

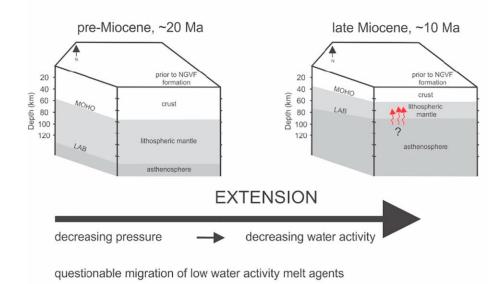
'Central' locations: Bakony-Balaton Highland, Little Hungarian Plain, Nógrád-Gömör



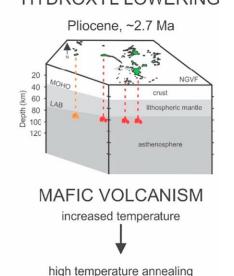


## Water in the xenoliths of the Carpathian-Pannonian region


NAMs of xenoliths from
Bakony-Balaton Highland
(BBHVF) and Nógrád-Gömör
(NGVF) have significantly
lower water content than
those from Styrian Basin
(SBVF) and Perşani
Mountains (PMVF)

Reasons for lower water content in xenoliths from areas more affected by lithospheric thinning:


- Pre-eruptive reequilibration
- Post-eruptive hydrogen loss during cooling








#### PRE-ERUPTIVE RE-EQUILIBRATION



#### POST-ERUPTIVE STRUCTURAL HYDROXYL LOWERING





## **Effective viscosity**

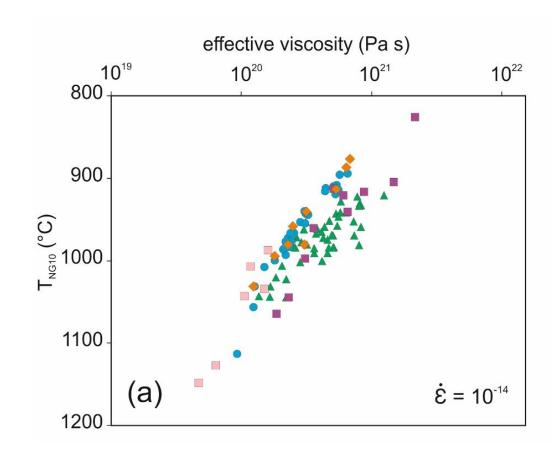
Expressed from stress and strain rate:  $\eta_{eff} = \sigma/\dot{\epsilon}$ 

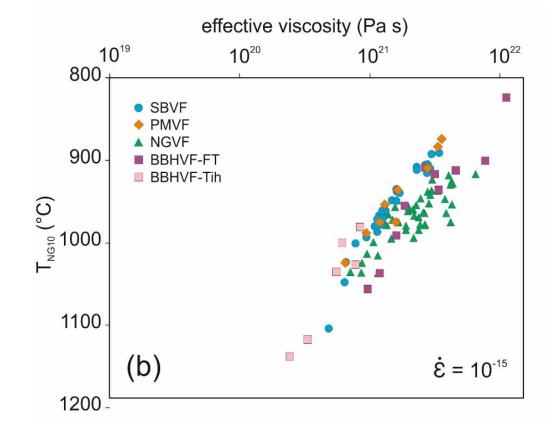
Strain rate is calculated with an Arrhenius equation containing a term related to water content (water fugacity or concentration)

$$\dot{\varepsilon} = A_{cre} \sigma^{n_1} f_{H_2O}^r \exp\left(-\frac{Q + PV_{cre}}{RT}\right)$$



$$\eta_{\text{eff}} = \dot{\varepsilon}^{(1-n)/n} f_{\text{H}_2\text{O}}^{-r/n} (A \exp^{-(H^*/RT)})^{-1/n}$$


| Material constants                    |                                           | $H^* = Q^* + PV^*$                |                          |
|---------------------------------------|-------------------------------------------|-----------------------------------|--------------------------|
|                                       | A                                         | Q*<br>(J/mol)                     | V* (m <sup>3</sup> /mol) |
| Dry dislocation                       | $1.1 \times 10^5$ (MPa) <sup>- n</sup> /s | $5.30 \times 10^5$ ( $\pm 0.04$ ) | $20 \times 10^{-6}$      |
| Wet dislocation (constant $f_{H,O}$ ) | $(MPa)^{-(n+r)}/s$                        | $5.20 \times 10^5$ ( $\pm 0.4$ )  | $22 \times 10^{-6}$      |
| Wet dislocation (constant $C_{OH}$ )  | 90 $(MPa)^{-(n+r)}/s$                     | $4.80 \times 10^5$ ( $\pm 0.4$ )  | $11 \times 10^{-6}$      |


n (stress exponent)=3.5, r (fugacity exponent)=1.2 for wet dislocations [40].

Water fugacity ( $f_{H20}$ ) can be replaced with water concentration ( $C_{OH}$ )



## **Effective viscosity**





Effective viscosity decreases with depth due to increasing T

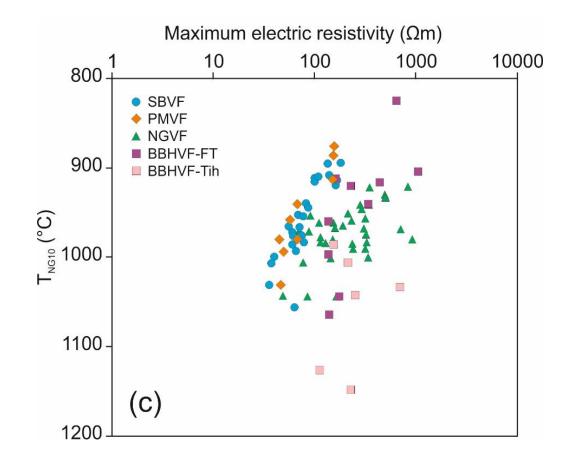
- 'Marginal' localities have similar trends
- 'Central' localities show higher viscosity on average

Beside water content, strain rate also has an important effect

T<sub>NG10</sub>: Ca-in-opx thermometer of Brey and Köhler (1990) modified by Nimis and Grütter (2010)

BBHVF-FT and -Tih are the youngest and oldest xenolith locality of the volcanic field, respectively




## Electrical conductivity / resistivity

#### Model of Fullea, 2017

- Includes pyroxenes and their proportion alongside olivine
- Used parameters: modal ratio, composition (Fe-content), and structural hydroxyl concentration of olivine and pyroxenes

Higher resistivity of 'central' localities → lower water content (no significant difference in Fe-content)

Presence of melts/fluids can have a significant effect



 $T_{NG10}$ : Ca-in-opx thermometer of Brey and Köhler (1990) modified by Nimis and Grütter (2010)

BBHVF-FT and -Tih are the youngest and oldest xenolith locality of the volcanic field, respectively



### Conclusions

- In the Carpathian-Pannonian region, xenoliths from the 'marginal' localities are more water-rich compared to those from 'central' localities
- Water content has an effect on rheological properties (effective viscosity, resistivity) →
  central areas are more rigid than marginal areas
- This may be similar in subduction back-arc basin systems worldwide
- Additional effects (change in strain rate, presence of melts/fluids) need to be taken into
  account
- Comparable with geophysical observations (e.g., deep MT soundings)



