

DOI: https://doi.org/10.5194/egusphere-egu2020-19035

ID: D2786 | EGU2020-19035

Semidiurnal tidal signatures in microbarom infrasound array measurements

Sven <u>Peter</u> Näsholm^{1,7}, Ekaterina Vorobeva^{1,2}, Alexis Le Pichon³, Yvan J. Orsolini⁴, Antoine L. Turquet¹, Robert E. Hibbins², Patrick J. Espy², Marine De Carlo^{3,6}, Jelle D. Assink⁵, Ismael Vera Rodriguez¹

Session AS1.21

Infrasound, acoustic-gravity waves, & atmospheric dynamics

Friday, 8 May 2020, 16:15-18:00

- ¹ NORSAR, Kjeller, Norway (peter@norsar.no)
- ² Norwegian University of Science and Technology (NTNU), Department of Physics, Trondheim, Norway
- ³ CEA/DAM/DIF, DASE, Arpajon, France
- ⁴ Norwegian Institute for Air Research (NILU), Kjeller, Norway
- ⁵ Royal Netherlands Meteorological Institute (KNMI), R&D Seismology and Acoustics, De Bilt, Netherlands
- ⁶ Univ. Brest, CNRS, IRD, IFREMER, Lab. d'Oceanographie Physique et Spatiale (LOPS), IUEM, Brest, France
- ⁷ Univ. of Oslo, Department of Informatics, Oslo, Norway

Semidiurnal tidal signatures in microbarom infrasound array measurements

Recent studies on infrasonic signatures related to atmospheric tides are mostly focused on stratospherically ducted infrasound or on tidal signatures in recorded infrasound signal power.

In the current work, we address microbarom infrasound ducted by mesosphere-lower thermosphere (MLT) waveguides and the associated infrasound apparent velocity (trace velocity) of arrivals at a ground-based array station in northern Norway.

A hypothesis is that the infrasound apparent velocity – which is related to the incidence angle of the wavefront impinging the station – is linked to the altitude of the final refraction of the infrasound waves. This altitude would be affected by the regional MLT tidal pattern.

We apply specialized beamforming and filtering recipes to highlight the MLT-ducted microbarom arrivals and we find semidiurnal patterns in the infrasound apparent velocity measurements.

Array site & microbarom source

Wave-front & array measurements

Pressure amplitude

[Donn & Rind 1971 ++; Smets & Evers 2014; Smets, Assink & Evers 2019]

- Along-track wind & T sensitivity
- Challenges:

Sensitive to source strength variations; Longdistance propagation over multiple tide phases

Celerity / traveltime

- Along-track wind & T sensitivity
- Challenge: Continuous-wave microbaroms without "origin time"

Backazimuth direction-of-arrival

- Cross-wind sensitivity
- Challenges:

Long-distance propagation over multiple tide phases, as well as vertical integration effects ?

Inclination direction-of-arrival

- Along-track wind & T sensitivity
- Prospective advantage:
 - Information about **final return path**, with less longdistance averaging over multiple tide phases ?

Domains

- Apparent velocity (trace velocity):

 $V_{\text{app}} \in [C_{0 \text{ground}}, \infty]$

– Inclination:

 $\operatorname{arcsin}(c_{0 \operatorname{ground}} / v_{\operatorname{app}}) \in [0, 90] \operatorname{deg.}$

More favorable for fitting to sinusoids

Tide-related signatures in infrasound ambient noise recordings ?

Tidal characteristics of the middle atmosphere

- Semidiurnal (12h) period would dominate above stratopause
- Diurnal (24h) period would dominate in the stratosphere

But we're at high latitudes:

- Tidal patterns are complex ("tidal weather"):
- Non-linear interactions between tidal components (migrating & non-migrating) and between planetary waves and tides, and time-varying sources

Altitude-regime particular interest (less studied for infrasound)

Mesosphere-lower thermosphere (MLT) tidal signatures

Requires:

Data processing to isolate the "thermospheric microbarom arrival", having penetrated the MLT

Approaches:

- Temporal filtering & window-length settings
- Spatial filtering (adaptive or conventional beamforming)
- Rejecting data-points which obviously are not MLT arrivals

Season of particular interest at high latitudes:

Late summer MLT semidiurnal tides

Radar observations:

Late summer peak in semidiurnal tide

- Trondheim meteor radar climatology (Norway) - see figure. Also previously observed over ESRANGE (Sweden)
 [Mitchell et al., 2002] and Andenes (Norway, close to I37NO) [Riggin, et al., 2003]
- Maximises around early September primarily due to the migrating SW2 tide but with contributions from non-migrating modes [Hibbins et al., 2019]

Climatology of semidiurnal tides in Trondheim meteor radar zonal wind amplitude [m/s]

Pinpointing thermospheric microbarom infrasound

Processing pipeline, I37NO data

• Temporal filtering: 0.1 – 0.2 Hz

Allows for "focusing" onto microbarom hotspot close to Greenland/Iceland

- Long time window, to accommodate for continuous-wave microbarom arrivals
- Find location of slowness space peak with highest coherence ⇒ wave-front parameters (backazimuth & apparent velocity)
- Reject too low array coherence (but stay very tolerant)
- Reject backazimuth outside of relevant sector
- Irregularly sampled time-series of apparent-velocity (inclination angle) estimates

Generalized Lomb-Scargle periodogram

Fit our irregularly sampled inclination angle series to:

$$y(t;f,ec{ heta})= heta_0+\sum_{n=1}^{ t nterms}[heta_{2n-1}\sin(2\pi nft)+ heta_{2n}\cos(2\pi nft)]$$

Floating-mean method: θ_0 compensate for biased average estimate $N_{\text{terms}} = 2$ means including 1st harmonic. [We first set $N_{\text{terms}} = 1$]

- Moving time-window, calculate L-S periodogram for 5-day chunks
 - Pseudo-spectrogram showing tidal peaks as function of day Normalize each periodogram to its max, before packing to pseudo-spectrogram

Resulting semidiurnal signatures

Eastward stratospheric winter vortex

- \Rightarrow
- In winter, stratospheric arrivals dominate in microbaroms from "Iceland / Greenland hot-spot" at I37NO
- In summer, MLT arrivals can dominate, but only if signal processing removes stratospheric arrivals from other directions (Pacific / Barents, etc.)

C > 0.01, $\varphi \in [180.0, 330.0]$, $Vapp \in [320.0, 550.0]$ m/s

 \odot

 (\mathbf{i})

Pseudo-spectrograms from inclination angle

Pseudo-spectrograms from inclination angle

Winter examples: "less semidiurnal"

Reflections

Current study

Focus on *identifying* semidiurnal variations in microbarom data

What's next ?

- Benchmarking against models & other data ?
- Apply similar method to other infrasound parameter time-series ?
- Evaluate time-of-delay (phase) evolution of the L-S pseudo-spectrogram ?
- Evaluate prospective added-value to atmospheric probing of the MLT ?
- Infrasound-based wind estimates would be great of great value

References

Donn W.L., Rind D. (1971) Natural infrasound as an atmospheric probe. Geophys J R Astron Soc 26:111–133

Hibbins, R. E., Espy, P. J., Orsolini, Y. J., Limpasuvan, V., & Barnes, R. J. (2019). SuperDARN observations of semidiurnal tidal variability in the MLT and the response to sudden stratospheric warming events. Journal of Geophysical Research: Atmospheres, 124(9), 4862-4872.

Mitchell, N. J., Pancheva, D., Middleton, H. R., Hagan, M., (2002). Mean winds and tides in the Arctic mesosphere and lower thermosphere, *J. Geophys. Res.*, 107(A1), doi: <u>10.1029/2001JA900127</u>.

Riggin, D. M., Meyer, C. K., Fritts, D. C., Jarvis, M. J., Murayama, Y., Singer, W., Vincent, R. A. & Murphy, D. J. (2003). MF radar observations of seasonal variability of semidiurnal motions in the mesosphere at high northern and southern latitudes. Journal of Atmospheric and Solar-Terrestrial Physics, 65(4), 483-493.

Smets, P. S. M., & Evers, L. G. (2014). The life cycle of a sudden stratospheric warming from infrasonic ambient noise observations. *Journal of Geophysical Research: Atmospheres*, *119*(21), 12-084.

Smets, P., Assink, J., & Evers, L. (2019). The study of sudden stratospheric warmings using infrasound. In *Infrasound Monitoring for Atmospheric Studies* (pp. 723-755). Springer, Cham.

VanderPlas, J. T., & Ivezic, Ž. (2015). Periodograms for multiband astronomical time series. The Astrophysical Journal, 812(1), 18.

Funding acknowledgment

- Research Council of Norway FRIPRO/FRINATEK basic research programme, project contract 274377:
 - *Middle Atmosphere Dynamics: Exploiting Infrasound Using a Multidisciplinary Approach at High Latitudes* (MADEIRA)

Appendix A:

Comparison with *backazimuth* pseudo-spectrograms

Appendix B: data point sifting demo

- 0.1-0.2 Hz
 0.3-0.4 Hz
 0.7-0.8 Hz
 Winter: all frequency bands towards ~ same source towards west
 Summer:
 - Lowest freq. band towards source in *west*, with *high* app. velocity ⇒ MLT arrival
 Highest freq. band varying direction, with *lower* app. velocity ⇒ Stratospheric arrival

$C > 0.05, \varphi \in [180.0, 360.0]$

 \odot

C > 0.05, $\varphi \in [180.0, 360.0]$, $Vapp \in [320.0, 550.0]$ m/s

۲

60

NORSAR

