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Subject to velocity loading conditions on at least
part of the external boundary

O  stress tensor
é, E es E p Strain rate tensor, elastic-, plastic-
C elastic stiffness tensor
£ p Scalar magnitude of plastic strain rate
7V unit tensor in dir. of plastic strain: vn : n =1
F  ‘yield function’
Eps ép optionally non-local equiv. pl. strain and -rate,
following € = € + *VZe (explicit)

e = ¢ — c?V2& (implicit) [1]

Example of a non-linear plastic flow rule

Rate- and State-dependent bulk friction with
explicit non-local involvement of strain rate and
state in the evolution equation:
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Current best practices

Multi-level Newton with consistent tangent linearization [2].

Reliable quadratic convergence.

Computationally expensive iterations of the global
problem due to the requirement that the non-linear
plastic flow rule is solved accurately at each iterate.

Problematic if the plastic flow rule is non-local

Prohibits cheaply, accurately finite-differenced Jacobians.

Proposed alternative

Algorithm of [3] improved for J2-plasticity: instead of
requiring the simultaneous solution of 9 unknowns in 3D
(v, ép), here we require the simultaneous solution of 4
unknowns (v, € p). The residual formulation reads:
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1. Computation of yield strength 7, based on proposed v, €,

2. Dirty trick! Replaced 7 = /7T : T with Ty. This leads to
a small, self-correcting deviation from the true solution.
However, it is crucial to the proposed system reduction.

3. Elastic deviatoric stress prediction; J2 of stress predictor.

4. Updated estimate of plastic strain rate magnitude,
derived from the consistency condition F = 0.

5. The crux of the one-level residual. The unknown €,
occurs in such a position that its effect on the residual is
predominantly smooth. The last term is a damping term
that favors polynomial extrapolation (ég ) at large time
steps. The time step h is adapted separately to minimize
the mismatch between the predictor and corrector [3].
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a. Sequences in angular brackets denote Newton polynomials.

b. ||R|| is minimized by a Newton-Raphson procedure. The
Jacobian is formed by finite-differencing the residual with
respect to its independent variables v and €.

c. Adaptive time-stepping procedure based on minimization of
the extrapolation error [3].

Known properties of the algorithm

® (Quadratic convergence.
® Second-order accurate in time.
® Variable time step, reasonably optimal adaptivity.

® Residual can be straightforwardly finite-differenced to
form the Jacobian: cheap and accurate.

® Readily extensible to a wide range of hardening and
softening laws, including those that are non-local.

Observed properties of the algorithm

® (Quadratic convergence.

® Time step implicitly controlled by the propagation of the
elastic-plastic boundary: adaptive time-stepping nearly
always too zealous; advantage of second-order accuracy
in time questionable.

® A zoo of numerical tuning parameters makes you waste
time when the model is changed.
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