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Figure 1. Schematic representation of the proposed framework for flash
flood damage prediction. In the figure, ANN (MLP) stands for Artificial
Neural Network (Multilayer Perceptron), and RF is Random Forest.
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* The findings of this study suggest the applicability and usefulness of ML models for
prediction of property damages associated with flash flood events over a large domain.
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1 | INTRODUCTION

Abstract

Flash floods are common natural hazards in the southeast United States

(SEUS) as a consequence of frequent torrential rainfall caused by tropical

storms, thunderstorms, and hurricanes. Understanding flash flood characteris-

tics is essential for mitigating the associated risks and implementing proactive

risk management strategies. In this study, flash flood characteristics including

frequency, duration, and intensity are assessed in addition to their associated

property damages. TI

ne National Oceanic and Atmospheric Administration

(NOAA) Storm Even

s database as well as hourly precipitation data of the

North American Land Data Assimilation System project phase-2 (NLDAS-2)
are ufilised, and more than 14,000 flash flood events during 1996-2017 are

analysed. Flash tlood hazard is investigated at county, state, and regional levels

across the SEUS. Results indicate increasing pattern for the frequency and

intensity of flash floo
found to be higher in

ding over the SEUS. The frequency of flash flooding is

spring and summer, whereas the duration and intensity

of events are higher during winter and {fall, respectively. The western parts of

the SEUS are prone to more frequent and intense flash flooding compared to

the eastern parts. Overall, our analyses suggest that flash flood hazard in Loui-

siana is higher than other states in the SEUS.
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Flash floods are among the most devastating natural haz-

ards, which threaten human lives and properties in vari-
ous regions of the world (Ahmadalipour & Moradkhani,
2019; Bezak, Sraj, & Mikos, 2016; Miao, Yang, Yang, &
Li, 2016). According to the National Weather Services
(NWS), flash floods generally initiate within a few
minutes up to less than 6 hr of an intense rainfall
(Jalayer, Aronica, Recupero, Carozza, & Manfredi, 2018).

This is an open access arficle under the ferms of the Creative Commeons Attribution License, which permits use, distribution and reproduction in any medium, provided

the eriginal work is properly cited.

The rapid onset of flash floods limits effective and timely
decision making, and causes the highest number of casu-
alties (on average) compared to the other types of
flooding (e.g., coastal floods [storm surge| and river
floods) (Jonkman, 2005). Flash floods caused the highest
number of casualties among various flood events in the
United States (Ashley & Ashley, 2008; Terti, Ruin,
Anquetin, & Gourley, 2017). The frequency of heavy pre-
cipitation has been shown to increase under climate
change (Halmstad, Reza, & Moradkhani, 2013; Ma et al.,

© 2020 The Authors. Journal of Flood Risk Management published by Chartered Institution of Water and Environmental Management and John Wiley & Sons Ltd.
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Abstract

Flash flood is a recurrent natural hazard with substantial impacts in the Southeast US (SEUS) due to
the frequent torrential rainfalls that occur in the region, which are triggered by tropical storms,
thunderstorms, and hurricanes. Flash floods are costly natural hazards, primarily due to their rapid
onset. Therefore, predicting property damage of flash floods is imperative for proactive disaster
management. Here, we present a systematic framework that considers a variety of features explaining
different components of risk (i.e. hazard, vulnerability, and exposure), and examine multiple machine
learning methods to predict flash flood damage. A large database of flash flood events consisting of
more than 14 000 events are assessed for training and testing the methodology, while a multitude of
data sources are utilized to acquire reliable information related to each event. A variable selection
approach was employed to alleviate the complexity of the dataset and facilitate the model development
process. The random forest (RF) method was then used to map the identified input covariatestoa
target variable (i.e. property damage). The RF model was implemented in two modes: first, as a binary
classifier to estimate if a region of interest was damaged in any particular flood event, and then asa
regression model to predict the amount of property damage associated with each event. The results
indicate that the proposed approach is successtul not only for classifying damaging events (with an
accuracy of 81%), but also for predicting flash flood damage with a good agreement with the observed
property damage. This study is among the few efforts for predicting tlash flood damage across a large
domain using mesoscale input variables, and the findings demonstrate the effectiveness of the

proposed methodology.

1. Introduction

The Southeast US (SEUS) is known to be susceptible to

flash flooding due to the frequent high intensity
rainfall triggered by tropical storms, thunderstorms
and hurricanes (Orville and Huffines 2001, Czajkowski
et al 2011, Smith and Smith 2015). During the last two
decades, widespread flash flood events have caused
significant economic damage in this region. Recent
studies have shown that the frequency of tlash flooding
is increasing in the SEUS (Alipour ez 4/ 2020). Therefore,
predicting property damage of flash tloods is crucial
for attaining proactive disaster management in this
reglon.

Generally, risk refers to the potential losses of a
particular hazard (Cardona et al 2012, Armenakis et al
2017, Ahmadalipour et al 2019), which is character-
ized as a function of three major components: hazard,
vulnerability, and exposure (Adger 2006, Dang et al
2010, Winsemius et al 2013, Budiyono et al 2015, Koks
et al 2015). Assessing flash flood risk components has
been the subject of several studies. Recently, Ahmada-
lipour and Moradkhani (2019) investigated the spatio-
temporal characteristics of flash flooding hazard
over the Contiguous United States (CONUS). Also,
Khajehei et al (2020) assessed the socioeconomic
vulnerability of flash flooding at the county scale
across the entire CONUS while accounting for flash
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