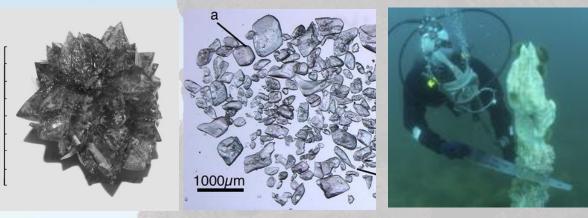
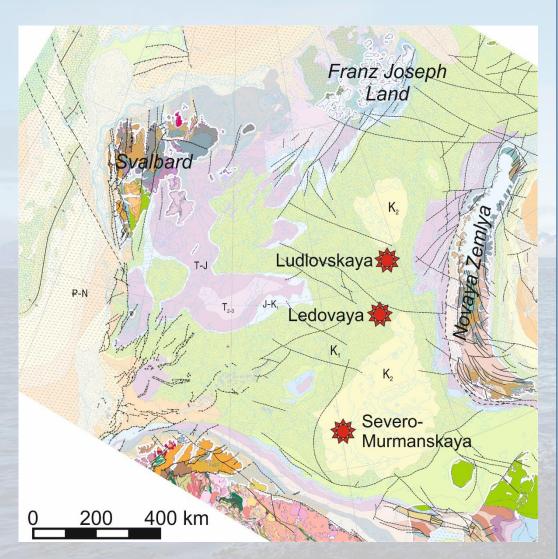

GLENDONITES FROM MESOZOIC SUCCESSION OF EASTERN BARENTS SEA: DISTRIBUTION, GENESIS AND PALEOCLIMATIC IMPLICATIONS


Kseniya Mikhailova, Victoria Ershova, Mikhail Rogov, Boris Pokrovsky, Oleg Vereshchagin

GLENDONITES = CALCITE PSEUDOMORPHS OF IKAITE

Glendonites

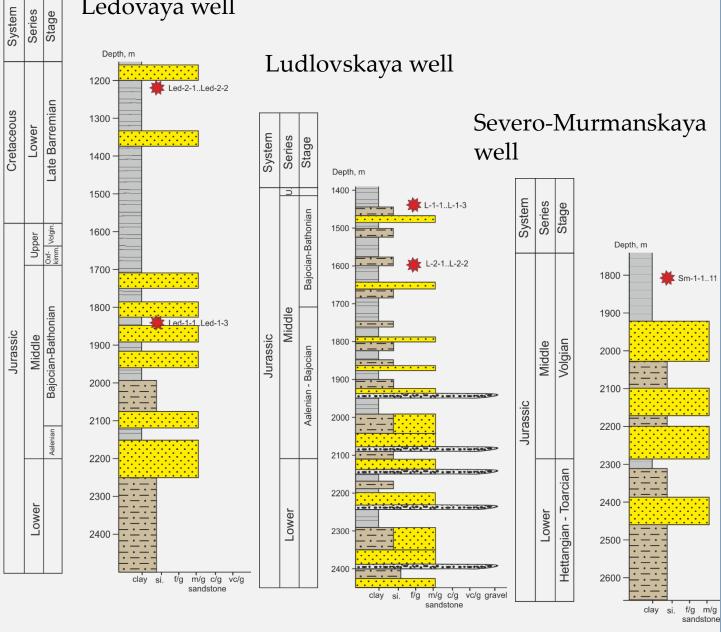
- Also called: pseudogaylussite, jarrowite, thinolite
- Varied morphology
- Age: Mesoproterozoic to modern
- Host rocks: mainly sandstone, siltstone, shale, carbonate concretions; may include glacial deposits
- Depth of formation: 5-5000 meters
- No specific facies and tectonic setting association


Druse Crystalls in sea ice (Krylov et al., 2015) (Dieckmann et al., 2008)

Tufa tower (Seaman, 2006)

Ikaite

- Metastable hexahydrate of calcite CaCO₃*6H₂O
- Forms under low temperature: mainly 0-4°C
- Stabilized by high $[PO_4]^{3-}$, Mg^{2+} , $[SO_4]^{2-}$, anaerobic oxidation of methane and/or organic matter; dissolved organic carbon, amino acid

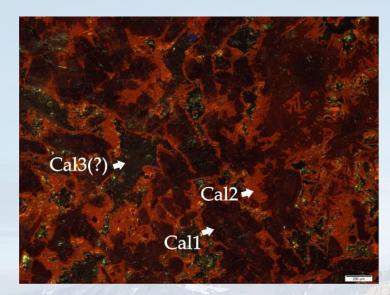

Location of studied wells

Geological map of Eastern Barents Sea

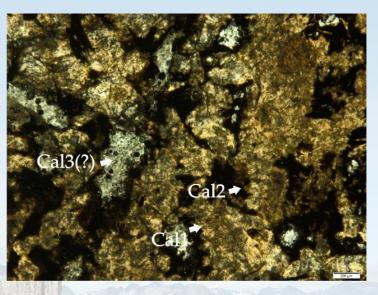
Ledovaya well

Cretaceous

Stratigraphic section and levels with glendonites


METHODS

- Cathodoluminescence microscopy (CL)
- Carbon and oxygen isotope analysis
- X-ray diffraction



Paleoclimatic reconstruction of Middle Jurassic-Early Cretaceous

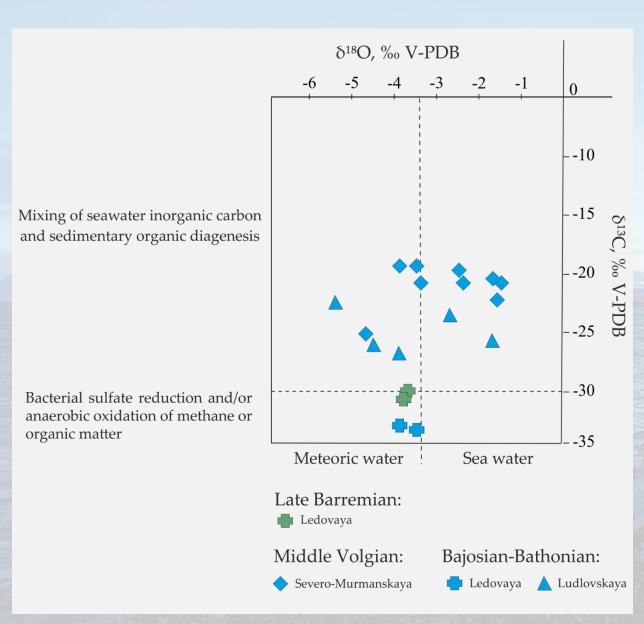
CATHODOLUMINESCENCE MICROSCOPY

Sample L-2-2, in CL

Sample L-2-2, plane-polarized photo

Barents sea glendonites are composed of three calcite phases:

Cal1 – calcite form elongated crystals up to 3 mm in size with concentric zonation; darkbrown CL-light. The most abundant phase (>50%)


Cal2 – calcite, bright orange CL-light (~15%) Cal3 – calcite (?), blue CL-light

X-RAY DIFFRACTION

Sample	Calcite	Pyrite	Marcasite	Quartz	Kaolinite	Gypsum
CM-1-6	+	+	±	+	+	+
CM-1-8	+			+	+	+
LED-1-1	+			+	+	
LED-2-1	+				+	
L-1-2	+			+		
L-2-1	+			+		
L-2-3	+			+		

All studied glendonites consist of calcite, one sample includes pyrite and/or marcasite. Quartz, kaolinite and gypsum represent the remnants of host-bearing rocks.

CARBON AND OXYGEN ISOTOPE ANALYSIS

Oxygen isotope composition for Middle Jurassic glendonite concretions range from – 5.4 to –1.7 ‰ Vienna Pee Dee Belemnite (VPDB); for Upper Jurassic – Lower Cretaceous δ^{18} O values range from – 4.3 to –1.6 ‰ VPDB;

for Lower Cretaceous - δ^{18} O values range from – 4.5 to –3.4 % VPDB.

Carbon isotope composition for Middle Jurassic glendonite concretions range from – 33.3 to –22.6 ‰ VPDB; for Upper Jurassic – Lower Cretaceous δ^{13} C values range from – 25.1 to –18.4 ‰ VPDB; for Lower Cretaceous - δ^{13} C values range from – 30.1 to –25.6 ‰ VPDB.

Based on δ^{18} O data we suppose that seawater had a strong influence on ikaite-derived calcite precipitation. Received data coincide with δ^{18} O values reported from other Mesozoic glendonites and Quaternary glendonites formed in cold environments. Values of δ^{13} C of glendonites are close to bacterial sulfate reduction and/or anaerobic oxidation of methane or organic matter.

PALEOTEMPERATURE ESTIMATION

$$t(^{o}C)=15.7-4,36(\delta^{18}O_{Cal}-\delta^{18}O_{water})+0,12(\delta^{18}O_{Cal}-\delta^{18}O_{water})^{2} \ (\text{De Lurio, Frakes, 2008})$$

$$\delta^{18}O_{seawater}=-1\% SMOW$$

		13	18	
Time	Sample	¹³ C, PDB	¹⁸ O, PDB	Paleotemperature
Late Barremian	Led-2-1	-29,70	-3,36	16,17
Late Barremian	Led-2-2	-30,10	-3,55	17,02
Middle Volgian	Sm-1-1	-19,60	-3,07	14,90
Middle Volgian	Sm-1-3	-22,30	-1,42	8,11
Middle Volgian	Sm-1-4	-21,30	-3,26	15,74
Middle Volgian	Sm-1-5	-20,80	-2,58	12,83
Middle Volgian	Sm-1-6	-20,00	-1,61	8,87
Middle Volgian	Sm-1-8	-18,40	-3,94	18,76
Middle Volgian	Sm-1-9	-25,10	-4,33	20,53
Middle Volgian	Sm-1-10	-20,10	-1,90	10,04
Middle Volgian	Sm-1-11	-19,90	-2,19	11,22
Bajocian-Bathonian	Led-1-1	-33,30	-3,55	17,02
Bajocian-Bathonian	Led-1-3	-32,60	-3,84	18,32
Bajocian-Bathonian	L-2-1	-25,60	-4,52	21,43
Bajocian-Bathonian	L-2-2	-26,10	-3,94	18,76
Bajocian-Bathonian	L-1-2	-22,60	-5,39	25,60
Bajocian-Bathonian	L-1-3	-24,20	-2,77	13,65
Bajocian-Bathonian	L-2-3	-25,4	-1,71	9,26

- Arrows point to the samples with estimated temperatures close to ikaite formation
- Oxygen isotope composition of seawater in Mesozoic may vary from -1 to 1.9%SMOW

CONCLUSIONS

- Studied glendonites were collected from Middle Jurassic-Early Cretaceous terrigenous successions (clay and siltstone) of Eastern Barents Sea
- It was defined that pseudomorphs consist of three calcite phases with minor admixture of pyrite, marcasite, quartz, kaolinite and gypsum
- Isotopic composition of oxygen was caused mainly by diagenetic processes. However we got the results close to oxygen isotope composition of Mesozoic seawater
- The source of carbon was organic matter decay
- Based on oxygen isotope composition we calculated paleotemperature that are quite favorable to ikaite formation
- Despite Mesozoic climate was warm studied concretions pointed to cold climate excursion in Bajosian-Bathonian, Middle Volgian ant Late Barremian

THANK YOU FOR ATTENTION!

The study is supported by RFBR, project number 20-35-70012. The research project is being carried out in the SPSU Research Park