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Global Energy Flows W m*?
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Fic. I. The global annual mean Earth’s energy budget for the Mar 2000 to
May 2004 period (W m™?). The broad arrows indicate the schematic flow of
energy in proportion to their importance.

(Trenberth et al., 2009)
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Poleward Heat Transport

e More Insolation (UV) in
Equatorial and Tropical Re-
gions than Polar Regions

e Outgoing IR more uniform

e This Energy Imbalance is
Ultimate Driver of Atmo-
spheric and Oceanic Circu-
lation

e Inturn Transports Heat
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Meridional Distribution of Radiative Imbalance
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Fig. 11.1 {a) The (approximate) observed net average incoming solar
radiation and outgoing infra-red radiation at the top of the atmosphere,
as a function of latitude (plotted on a sine scale). (b) The temperatures
associated with these fluxes, calculated using T’ = (Rfa]'f“, where R is
the solar flux for the radiative equilibrium temperature and R is the infra-
red flux for the effective emitting temperature. Thus, the solid line is an
approximate radiative equilibrium temperature

Wallis, 2006

6/31



Hawaii Carbon Dioxide Time-Series

CO, Time Series in the North Pacific
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Temperature Response
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Temperature Response

TIME SERIES: 1884 TO 2019

2019

Data source: NASA/GISS

Temperature Difference (Fahrenheit)
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A Two Minute Climate Modeling Tour
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Earth System Models

» Built bottom-up by coupling
various dynamical, physical,
and biogeochemical
subsystems

» Atmosphere, ocean,
sea-ice, land surface and
vegetation,
biogeochemistry in ocean

» Closes carbon cycle

» Best tool available to

understand and model
climate and climate change

v

Computationally demanding and requires big infrastructure

» Prevents it from being used even more widely and in different
settings.
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What do Earth System Models try to do?

Basically everything that the climate system does: feedbacks, circulation, poleward heat
transport, energy balance, temperature distribution everywhere, etc.
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Fic. I The global annual mean Earth’s energy budget for the Mar 2000 to
May 2004 period (W m™). The broad arrows indicate the schematic flow of
energy in proportion to their importance.

Temperature anomaly (*C)

Poleward Heat Transport

e More Insolation (UV) in
Equatorial and Tropical Re-
gions than Polar Regions

« Outgoing IR more uniform

e This Energy Imbalance is
Ultimate Driver of Atmo-
spheric and Oceanic Circu-
lation

o Inturn Transports Heat

Standardized PAGES2K
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Prediction and Predictability

“Weather prediction is (then identified with) the process of
determining how the weather will change as time advances, and
the problem of weather predictability becomes that of ascertaining
whether such predictions are possible.”
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Climate Prediction and Predictability

“Weather is (often) identified with the complete state of the
atmosphere at a particular instant.

...We may therefore define climate as a set of statistics of the
ensemble of all states during a long but finite span. Climate
prediction then becomes the process of determining how these
statistics will change as the beginning and end of the time span
advance and climatic predictability is concerned with whether such
climatic prediction is possible”

Lorenz, E. N. (1975). Climate predictability, The physical basis of

climate and climate modelling (vol. 16, pp. 132-136), Garp
publication series: WMO.
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Two Kinds of Predictability: External-Forcing Related
Predictability and Natural-Variability Related Predictability
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(IPCC AR5)
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Models Good at Realizing External-Forcing Related Predictability
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Models Good at Realizing External-Forcing Related Predictability
(IPCC AR5)

(b)

MNorthern Hemisphere September sea ice extent
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Note that as much as 93% of excess heat due to GHGs is
taken up by the world oceans!
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Difficulty with Predicting Natural Variability
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Chaotic Nature of Natural Variability
(Lorenz, 1969; Griffies and Bryan, 1997, etc.)

Climatology ’ -

» Conduct initial condition D e

Initial condition uncertainty

ensemble simulations with uncertainty
climate model

» Obtain forecast dist.
P(v|0) (0 is obs.) and it
C|imat0|0gica| dISt P(V)) Deterministic
time forecast
(Swinbank et al. (2016) Cambridge University Press)

» Conduct analysis of forecast error covariance ¥ r and
climatological covariance ¥ ¢ (assuming normal dist.)
» Canonical Correlation Analysis
» Discriminant Analysis
» Predictive Component Analysis
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Difficulty with Predicting Natural Variability: Model Bias

antily of Interest
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P Predictability studies are
conducted in perfect model
settings

> However all climate models
are imperfect (have biases)
» Extremely difficult to
model the exact balance
(small residual) of myriad
(large) processes that lead
to the mean state of the
climate system and modes
of variability
» Small difference between
large numbers
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Initialized Predictions of Various Qols in Various Models

Display a Jump Behavior
Surface Temperature in CanCM4 and CNRM

b) CanCM4
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(From Kim et al., 2012)
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Deep Learning Spatio-Temporal Variability of Climate
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What are the predictability characteristics of the
spatiotemporal variability of surface temperature

A\

State of the art IPCC class model: NCAR CESM2
Seasonal cycle removed

Formulate problem with different forms/complexity, model
order reduction, data augmentation, ...

Develop learning based prediction system with different
architectures

Analyze predictability
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Modeling in Spatial Domain

PCA is used for model order reduction in some cases
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First two EOFs (left) of the interannual variability of global surface
temperature. Variance fractions, cumulative variance explained,
and evolution of the prinicipal components over a short 20 year

period are shown on the right
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Prediction Error Map
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Comparison of Predictive Skill Across DNN Architectures
and Other Statistical/Dvn. Models (No Climate Models)
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Difficulty with Predicting Natural Variability with DNNs
= Transfer Learning
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When presented with the full system, the neural network
can learn the Lorenz '63 attractor
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When presented with the full system, the neural network
can learn the Lorenz '63 attractor
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However, not so when the system is only partially observed
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Summary and Future Work
(Ongoing work)

» Predictability studies conducted in perfect model settings
suggest that predictability extends to the decadal timescale

» In reality, however predictive skill vanishes much much faster.
Model bias is one reason

» What do data driven methods have to offer in this setting?

» Learning based prediction system developed for an Earth
System Model

P> The system and the predictions need to be analyzed to
identify predictable patterns and establish predictability

» Transfer methodology to observations
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