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Introduction

Balancing power systems with renewables

Variable Renewables are expected to contribute to Ancillary Services (AS) that ensure balancing.
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Balancing power systems with renewables

Introduction

* Asingle renewable plant cannot guarantee an adequate level of power for ancillary services provision.

* AVirtual Power Plant (VPP) aggregates and controls Variable Renewable Energy (VRE) plants [1].
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Field Test of reserve provision by a Wind-PV VPP (source: REstable project)

[1] : Strahlhoff J., Liebelt A., Siegl S., Camal S., Development and Application of KPIs for the Evaluation of the Control Reserve Supply by a Cross-border
Renewable Virtual Power Plant, Informatik 2019 Kassel, Published in Lecture Notes in Informatics, Gesellschaft fur Informatik, 2019,

https://dx.doi.org/10.18420/inf2019_69]

S.Camal Trajectories of a renewable VPP, EGU 2020, 2020-05-06


https://dx.doi.org/10.18420/inf2019_69
https://dx.doi.org/10.18420/inf2019_69
https://dx.doi.org/10.18420/inf2019_69
https://dx.doi.org/10.18420/inf2019_69
https://dx.doi.org/10.18420/inf2019_69
https://dx.doi.org/10.18420/inf2019_69

Introduction I

Forecasting VRE production

A probabilistic forecast of the VPP production is needed to prepare an offer of reserve.

Deviations from the volume offered / \‘ Reserve is crucial for the system, so TSOs expect

imply penalties on markets high reliability from reserve offers
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Trajectories of VPP production must be generated, they can be obtained from probabilistic density forecasts (e.g. in [2])

[2] Golestaneh F, Gooi HB, Pinson P. Generation and evaluation of space—time trajectories of photovoltaic power. Appl Energy 2016;176:80-91.
doi:10.1016/J.APENERGY.2016.05.025.
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Workflow

Methodology

How to forecast the aggregate production of the VPP?

Proposition: in addition to separate forecasts at sub-levels, a direct approach is proposed and compared.
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Trajectories of aggregate VPP production

Methodology

Proposition: Compare trajectories from direct aggregate forecast

and from separate forecasts by energy sources [3]
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[3]: Camal, S., Teng, F., Michiorri, A., Kariniotakis, G., & Badesa, L. (2019). Scenario generation of aggregated Wind, Photovoltaics and small Hydro production for power
systems applications. Applied Energy, 242, 1396-1406. https://dx.doi.org/10.1016/j.apenergy.2019.03.112
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Methodology

Case study on a multi-source VPP Case study & Resuls

Trajectories of VPP production are generated from density forecasts, with day-ahead horizon

Data

= 15 plants: 9 MW PV, 33 MW Wind, 12 MW run-of-river Hydro
= NWP from ECMWEF (run 00.00 UTC) at each site

= Production data: 10* points at 30-min resolution (06/15-03/16)
Density forecasts by Quantile Regression Forest (QRF)

= Learning on 6 days of week and testing on the remaining day

= Parametrization of models by grid search

Generation of 100 trajectories from 2 methods

= DG: Direct forecasting of VPP production + Gaussian copula

= |G: Indirect Forecasting separate by energy source + Gaussian copula
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Evaluation metrics of trajectories Case study & Result

Standard metrics

*  Amplitude of trajectory set
*  NRMSE

* Bias

e Auto-correlation function

Specific metrics evaluating the variability and the capacity to model ramps of several durations

Property Global variability Occurrence of ramps
Score Variogram Score (VS) Brier score (BS)
Formulation W _
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Results — Qualitative analysis of an example Case study & Results I

Reduction to 10 trajectories by fast-forward reduction.
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Analysis of situations:
A: Wind dominant energy source, decreasing sharply in a few hours.

-> Trajectories from direct and separate forecasts model correctly
the VPP production

B: High wind plateau, under-estimated by forecasting models.

-> Trajectories from separate forecasts exhibit very frequent ramps
of VPP production (VPP ramps are ignored)

C: Low wind, PV is the dominant energy source.

-> Trajectories from direct forecast of VPP production overestimate
the impact of PV on VPP (saturations of energy sources are ignored)
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Results — Analysis of autocorrelation Case study & Resuls I
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The Autocorrelation Function (ACF) of trajectories shows that
they underestimate autocorrelations in VPP production for the
first 24 h. A better dependence model than the Gaussian Copula
could be investigated.
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. . Methodology
Results of trajectories

Case study & Results

VPP variants: highest capacity from Wind (VPP1) vs highest capacity from PV (VPP2)

: Trajectories with direct forecast DG: better Brier Score on VPP1

Trajectories with separate forecast IG: lower amplitude, NRMSE, and better Variogram Score on VPP2.
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Trajectories from separate forecasts reproduce better the variability of VPP production
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Conclusions

Conclusions & Perspectives

We dispose of a methodology to generate trajectories for a renewable VPP providing ancillary services

— The methodology proposes to generate trajectories from a direct density forecast of VPP production or
from separate density forecasts by energy sources

= The research questions on multi-source variable RES forecasting are plenty
o Marginally adressed in existing research
o Problem of high dimension, combinatorial complexity of possible approaches
o A multi-source VPP is a highly evolutive physical system (sources, plants, markets...)
= The approach with separate forecasts by energy sources leads to more realistic trajectories

o Especially on a VPP where horizon-dependent production (PV) dominates the total capacity
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®  Smart4RES project

O Generic seamless forecast of RES production: use knowledge on multiple energy sources to develop a generic model,
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