Efficient modelling of water temperature patterns in river systems — benchmarking a set of machine learning approaches
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Motivation The models compared in this study (see Figure 2) can be grouped into three categories: |
(i) Linear Models are included in the investigation as a benchmark, since they are widely used in

Statistical approaches (e.g. regression models) are widely used for modelling river water river water temperature modelling. We applied a multiple regression model with only air
temperature, but their flexibility of mapping processes and dynamics within the temperature and discharge as input (LM) and a regression model with step wise variable selection
catchment (e.g. energy fluxes) is rather limited. Here, machine learning (ML) methods (LMstep). LMstep uses all data input sets and also interaction terms. RN

are providing approaches, which may consider processes and dynamics within a (ii) The applied regression tree based models are Random Forest (RF) (Breiman, 2001) and XGBoost T "

catchment by learning from data. Recent studies just showed that Artificial Neural (Chen & Guestrin, 2016). Random forest predictions rely on averageing an ensemble of regression RNN - LSTM
Network approaches outperform the commonly used multiple regression approaches tree predictions trained on a random subset of training data. XGBoost consists of an ensemble of Hidden layers with parameters §
(Graf et al., 2019). This contribution goes one step further by analysing a set of different regression trees where each tree aims to predict the residuals resulting from the prediction of the

ML methods regarding their applicability by using different input data sets and previous trees.
catchments. (iii) Three types of Neural Networks are applied: Feedforward Neural Networks (FNN) (Rosenblatt,

1961), Long short-term Models (LSTM) (Hochreiter & Schmidhuber, 1997) and Gated Recurrent A
Yy = f(he,0)

Units (GRU) (Cho et al., 2014). FNNs are consisting of multiple fully connected hidden layers. LSTMs }
Data & M ethOdS and GRUs are both Recurrent Neural Networks (RNN) that consists of nodes with internal states that  figure 2: Overview of the applied models with ¥ denoting estimated water temperatures and X observed
can be used to model temporal sequences. GRUs have a simpler structure than LSTMs, as they variables.i  _,defines the predicted residuals from individual XGBoost trees. f(X, f/)denotes a mapping

: - . . from a FNN with the parameters 0. For a given time step, h; denotes the hidden internal state of a RNN
: include only one internal state whereas LSTM contain two internal states per node. ‘
Study area and input data sets Y P cell and ¢t the internal cell state of a LSTM cell. RNNs consist of a cascade of cells, each feeding their

internal states into the next cell, finally resulting in a single feedforward layer estimating Y from A .

The ML approaches are tested on 10 catchments listed in Table 1. They have different
characteristics, human impacts (e.g. hydropower, river regulation) and time series
lengths (10 to 39 years). The catchment outlets are situated in the Austrian Alps or
flatlands with areas ranging from 200 to 96.000 km? (see Figure 1).

Hyperparameter optimization and data splits
Hyperparameters are model parameters which values are set before the learning process is started. Therefore, to make the results of the models comparable and to ensure the best possible
predictive ability, all hyperparameters in this study are optimized using the Bayesian Hyperparameter optimization. The activation functions for FNN was chosen to be SELU (Klambauer et
al., 2017) activation function and was not optimized. The models are compared using their performance in the testing time period, which consists of the last 20% of the time series for each
Legend catchment. For hyperparameter optimization, the other 80% are further split into 60% training data and 20% validation data for the Neural Network models. The Linear Models and

v Gauge regression tree based models are validated using both 5 times repeated 10-fold Cross-validation and a time series Cross-validation.
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B 150 - 200 a5 grb g Table 3 summarises the best performing models for each catchment. Our results demonstrate that the analysed ML approaches outperforms Table 3: Best performing model for each catchment

200 - 300 ' ¢ 4o ) . . . .
- 300 - 500 9 4 ' LM methods regardless of the catchment characteristics and input data set. The model RMSE indicate that modelling river water temperature compared to the standard LM model performance.
A 3 ' ' Catchment Model Input  Model RMSE Model NSE LM RMSE LM NSE Area

200 =759 with the applied set of ML approaches achieves excellent prediction results for all tested catchment sizes, but works best for catchments c c c c_

750 - 1000 5 ‘ ' Kleine Muehl  RF simple 0,795 0,979 1,734 0,899 200,2

1000 - 1500 ' _ ' | | larger than approx. 300 km?. The results does not determine a specific input data length, elevation or input data set to be most eligible. The Aschach  FNN  simple 0709 0987 1764 0822 3122

1500 - 2000 y > ‘ ‘ A Erlauf XGBoost  simple 0,525 0,986 1,379 0,905 604,9

B 2000 - 2500 ' E . & ~ o best prediction results are achieved for the Alpine catchment Inn (RMSE 0,509 °C, NSE 0,975 °C) using XGBoost and all input data (see Figures Nobe PN smple 0563 oose 1795 osse  1res
I 2500 - 3000 : S : g M Saalach FNN  radiation 0,524 0,977 1,311 0,866 1139,1

I 3000 - 3800 ot . 3 to 6). For this catchment, LM was applied with a simple data input, while LMstep, RF, FNN, GRU and LSTM showed best results using the Enns PN radiaon 0520 0979 1421 0842 21162

Inn XGBoost all 0,509 0,975 1,376 0,829 2162,0

0 50 100 200 4 precipitation input data set. Figure 6 is showing the ranked importance of input variables of the XGBoost model for catchment Inn. Although e O Yere oy DR et

Figure 1: Overview map showing the study area in Austria, Switzerland and Germany. the best XGBoost model results were achieved using all input variables, the most important were mean daily air temperature on the day of
prediction and the days before (lags). The introduced set of ML methods provide an attractive approach for large-scale river temperature
modelling, where the requirements for using process-based models are not able to be met. The applied models will be introduced to the

community as open source R package with a companion publication soon.
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Table 1: Catchment properties including mean daily river water temperature (WT mean), mean daily discharge
(Q mean), mean daily precipitation (Prec. mean) and mean daily global radiation (Glob. Rad. mean).
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ID River Gauge HZB-Nr. Timeseries Years Area WT mean Q mean T mean Prec. mean Glob. Rad. mean
without gaps  km? °C m?3/s °C mm W/m?

Kleine Muehl Obermdhl 204883 2002-2015 14,0 200,2 8,87 3,12 9 2,73 135 Observation LM | RMSE = 1.376 | NSE = 0.957
Aschach Kropfmihle 205054 2004-2015 11,9 312,2 10,78 3,80 10 2,50 136
Erlauf Niederndorf 207803 1980-2015 35,3 604,9 9,42 15,27 3,59 127
Traisen Windpassing 207910 1998-2015 17,7 733,3 9,83 14,88 3,33 131
Ybbs Greimpersdorf 207688 1981-2015 34,7 1.116,6 9,87 31,50 3,77 127
Saalach Siezenheim 203570 2000-2015 16,0 1.139,1 8,50 39,04 4,60 135
Enns Liezen 210799 2006-2015 10,0 2.116,2 1,19 67,56 3,60 137
Inn Kajetansbrucke 201178 1997-2015 18,8 2.162,0 6,00 59,26 2,56 153
Salzach Salzburg 203398 1977-2015 39,0 4.425,7 7,63 178,11 4,16 136
10 Donau Kienstock 207357 2005-2015 11,0 95.970,0 10,77  1.798,31 10 2,13 131

Source HZB HZB HZB HZB HZB HZB HZB HZB  SPARTACUS SPARTACUS INCA (2007+)
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Figure 3: Correlation of observed and predicted mean
" daily river water temperatures for catchment Inn (dots)
Jan 2015 Apr 2015 Jul 2015 Okt 2015 Jan 2016 compared to a 1:1 line (blue line).
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LMstep | RMSE = 0.689 | NSE = 0.957 RF | RMSE = 0.553 | NSE = 0.972
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Data preprocessing
Observed data variables are grouped to simple and advanced sets of input data in Table
2 to analyse possible data dependencies. Since river water temperature is largely
controlled by processeses within the catchment, it can be described as a function of
catchment properties. Hence, only water temperature is used from a point measure- ol AT LRI -|' '||---- L iliand b ah B0
Jan 2015 Apr 2015 Jul 2015 Okt 2015 Jan 2016
ment (gauge) at the catchment outlet. Input variables with an integral effect over the
catchment are aggregated to catchment means. Additionally, lags of air temperature
and discharge were considered (1-4 days). The time was included as input by using fuzzy
months. They are equal 1 on the 15" of each month and linearly decreaseing until they
are zero on the 15" day of the previous and following month.
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Table 2: Input data sets.

Figure 4: Time series of observed river water temperature, best Figure 5: Comparison of observed river water temperature (blue line) and predicted river water temperature of Figure 6: Importance plot showing the relevance of
Input variable Input data sets .
i simple _ precipitation . radiation model (XGBoost) and input variables for 2015 at catchment Inn. the best perfoming models within each group (grey and red lines) for 2015 at catchment Inn. XGBoost variables for catchment Inn.
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