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1. The CoMet Mission overview 
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Introduction to the CO2 and Methane Mission (CoMet) 
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Realization of active and passive remote sensing as 

well as in situ observations of greenhouse gases  
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FDLR Cessna Instrumentation 

• CRDS Picarro G1301-m: CO2, CH4, 
H2O (Klausner et al., 2020) 

• Aerodyne QCLS: CO, C2H6, CO2, CH4, 
N2O, H2O (Kostinek et al., 2019) 

• Flask sampler: Isotopes, Jena Air 

Sampler (JAS) 

• MetPod: T, p, H2O, 3D-wind (Mallaun et 

al., 2015) 

Kattowice, Silesia, Poland 

 

28.05. – 14.06.2018 
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Flight overview 

Bil

d 

Belchatow Power Plant 

Ventilation Shaft, Pniowek Mine 
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2. Regional mass balance emission estimate 

Entire Upper Silesian Coal Basin (USCB) emissions of 

CH4, CO2, and CO are determined from an aircraft-borne 

in situ observations on June 6, 2018 (Fiehn et al., 2020) 
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Mass balance flights in coordination with ground teams 

from MEMO² 
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The mass balance 

flights were coordinated 

with ground-based 

mobile in situ 

observations from cars 

equipped with CRDS 

instruments driving 

below the inflow and 

outflow aircraft 

transects.  

Flight 20180606b  

-- Cessna 

-- AGH Krakow 

-- Uni Utrecht 

-- IUP Heidelberg 



Two similar flights on June 6, 2018, sampled entire USCB 
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Goal: assess the entire 

USCB coal mining, power 

plant, and industrial 

emissions.  

 

Figure: Flight B averaged 

CH4 concentrations from 

aircraft (circles) and 

mobile ground (triangles) 

observations. Red markers 

show the positions of coal 

mine ventilation shafts. 

Yellow markers are wind 

lidar instruments.  

(Fiehn et al., 2020, ACPD) 
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Flight 20180606b  



Wind situation during the mass balance flights 
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Wind speed and direction is constant, PBLH variability: Flight A: ± 300 m, Flight B: ± 50 m  

Measurement system described in Wildmann et al. (2020). (Fiehn et al., 2020, ACPD) 

For mass balance steady wind conditions and a constant boundary layer height are necessary. 



Downwind/outflow data interpolation Flight B 
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Kriging 

interpolation fields 

used for the mass 

balance of CH4, 

CO2, and CO using 

the kriged field of 

perpendicular wind, 

and measurement 

data in circles. The 

wall is constrained 

by the ground, 

PBLH, and corner 

points S and N. 
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(Fiehn et al., 2020, ACPD) 



Mass Balance Emission Estimate  

𝐹 =  𝑐𝑖 − 𝑐0  𝑣ⱶ,𝑖 𝐴𝑖
𝑖

 

𝑐𝑖 : Outflow/downwind concentration field from kriging results 

𝑐0: Average background concentration (two methods: upwind and downwind) 

𝑣ⱶ,𝑖 : Wind speed perpendicular to wall from kriging results 

 𝐴𝑖 : Area of wall pixel 

Assumptions: 

• Constant background 

concentration 

• Linear temperature and 

pressure profiles 
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Background determination (Upwind vs. Downwind) 

Afternoon flight upwind and 

downwind concentrations of 

CH4, CO2, and CO at different 

heights. Dashed part of lines 

are averaged for downwind 

background determination. An 

average of the black lines is 

used as upwind background. 

When using upwind 

background for CO2, the 

biogenic uptake within the 

mass balance area is 

determined from the 

Vegetation Photosynthesis 

and Respiration Model 

(VPRM; Mahadevan et al., 

2008).  
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(Fiehn et al., 2020, ACPD) 



Sensitivity studies 
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On average, the 

uncertainty of the 

background mole 

fraction (up to 50%) and 

the uncertainty of mole 

fractions at the ground 

(15-20%) have the 

highest impact on the 

systematic uncertainty. 

For flight A, the changing 

PBLH introduces an 

additional 21-23% 

uncertainty to the 

emission estimates  

(Fiehn et al., 2020, ACPD). 

Total uncertainties (Flight A and B):  
CH4: 26% and 21% 
CO2: 60% and 33% 
CO:   32% and 27%  



Emission inventory overview for comparison with results 
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Inventory Year Resolution Coverage Gases 

E-PRTR v16 

(EEA, 2019) 
2017 point Europe CH4, CO2, CO 

CoMet v2 

(internal inventory) 
2016 point 

Silesia,  

CZ Moravia 
CH4, CO2 

Scarpelli CH4 

(Scarpelli et al., 2019) 
2016 0.1° x 0.1° Global CH4 (Oil, Gas, Coal) 

CAMS-REG v3.1 

(Granier et al., 2019) 
2016 0.1° x 0.05° Europe CH4, CO2, CO 

EDGAR v5/v4.3.2 

(Crippa et al., 2018; Janssens-

Maenhout et al., 2019) 

see right 0.1° x 0.1° Global 

CH4 (2015),  

CO2 (2018),  

CO (2012) 

GESAPU 

(Bun et al., 2019) 
2010 15`` x 15`` (~400m) Poland, Ukraine CH4, CO2, CO 



CH4 emission inventories 
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CH4 emission distribution 

of inventories in the USCB. 

Background colors give 

emissions from gridded 

inventories while the 

markers are sized 

according to the emissions 

of the point source 

inventories. E-PRTR only 

shows mines, while the 

CoMet inventory includes 

single ventilation shafts of 

each mine. 

Biggest difference is that 

some inventories do not 

include Czech emissions 

(red circle). 

(Fiehn et al., 2020, ACPD) 



CO2 and CO emission inventories 
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Some sources in the northeast of the USCB were obviously misplaced in some inventories (red 
circles) and we enlarged the mass balance area with the straight red lines to include these. 

(Fiehn et al., 2020, ACPD) 
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Mass Balance Comparison with Inventories 

Error bars show one 
standard deviation of the 
estimates, where available. 

CH4: Airborne estimate in the lower range of the six presented emission inventories. 

CO2: Second flight constrains the emissions to the lower end of inventory values. 

CO:  In the upper range of the gridded emission inventories. 

(Fiehn et al., 2020, ACPD) 



3. Sub-regional CH4 emission estimates 

During several flights, sub-regions of the USCB were 

targeted and CH4 emissions of these were calculated 

using the same approach as for the entire USCB. 
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Possible sub-regional CH4 emission estimation 

S 

NW 

SW 

CZ 

N 
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Sub-regional mass balance CH4 (example Flight 1) 

CZ SW 

SW 

CZ 

N 
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Sub-regional emissions can be calculated from the research flights that targeted 

smaller parts of the USCB and plumes could be distinguished.  



Sub-regional mass balance results 
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Inventory NW N SW S CZ 

E-PRTR 148 275 178 203 0 

CoMet v2 110 277 181 242 61 

Scarpelli 68 186 341 499 0 

CAMS 3.1 123 328 209 285 6 

EDGAR v432 121 308 211 293 74 

EDGAR v50 111 281 195 272 48 

Gesapu 67 247 109 148 4 

Flights # 3/4/5 3/9 1 6/8/9 1/5/6 

Mass Balance 
Estimate [kt/a] 

242/285/310 369/362 199 280/271/290 88/94/ 68 

The method is the same as for the entire USCB, but no ground data is included.  

The uncertainty of the estimates is 30-40%. This will decrease when available 

ground-based mobile observations are assimilated. 



4. Ethane-to-Methane-Ratios (EMR) 

This ratio varies from region to region and can be used to 

determine emission strengths. 

> EGU 2020 > Alina Fiehn et al.  • Emissions of CH4, CO2, CO, C2H6 and isotopes in the USCB, Poland  > May 2020 DLR.de  •  Chart 26 



Ethane emission from Ethane-to-Methane-Ratio (EMR) 
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S 

NW 

CZ 

N 

AM 

Ethane plumes from the 

following sources were 

observed:  

NW: Northwest area 

N: Northern area 

S: Southern area 

CZ: Czech mines 

AM: AcelorMittal steel 

factory 

 

A linear fit of ethane vs. methane for each region 

revealed the corresponding EMR.   



Sub-regional Ethane-to-Methane-Ratio distribution 
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The EMR of the AcelorMittal 

steel factory is much larger 

than from the coal mining 

activities in the USCB. 

In the USCB the EMR shows a 

gradient with higher ratios in 

the south than in the north, 

which hints at different coal 

composition.  

Total USCB ethane emission:  

Flight A: 64.8 ± 16.9 g/s 

Flight B: 71.0 ± 14.1 g/s 



5. Isotopic signatures 

Types of methane sources can be differentiated by their 

isotopic composition. This composition provides a 

signature for each kind of source. 
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Isotopic signatures from flask samples 

Region Abbr. # 

Free Troposphere FT 15 

Inflow IN 8 

Background  BG 10 

Plumes PL 25 

TOTAL 58 
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Flask sample altitudes 
A total of 58 flasks were 

available for the analysis of 

USCB CH4 isotopic 

composition. Flasks were 

divided according to the 

location of sampling, either 

above boundary layer (FT), 

upwind of the emissions (IN), 

downwind, but not in a plume 

(BG) and finally within a CH4 

plume (PL).  



Determination of source signatures y0 using keeling plots 
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Observed isotopic ratios have to be corrected for the dilution with the 

background air masses to derive the source signatures.  



Isotopic signatures 
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*from Frank 2018, Table 2.3; *Kotarba and Lewan, 2004 

Isotopic signatures of different air 

masses in the USCB vary from 

biogenic to thermogenic.  

Free tropospheric samples (FT) 

show a biogenic signature, 

probably influenced by European 

agricultural and wetland sources. 

The coal mining plumes (PL) 

display an isotopic signature 

between microbial and 

thermogenic coal with lower d2H 

signature than previously sampled 

inside the mines. Boundary layer 

inflow and background are a 

mixture of these sources.  



• Ground-based observations reduced uncertainty of emission estimates 

• Background determination is important: 

• Sample outside of the plume on both sides 

• Fly an upwind leg on Lagrangian timescales 

• During morning flights changes in boundary layer height increase uncertainty 

Lessons learned 
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6. Summary 

• CH4 emission estimates are within the range of inventories 

• CO2 emission estimates (summer season) are lower than inventories 

• CO emission estimates are higher than inventories 

• The Ethane-to-Methane-Ratio shows a gradient across the USCB. 

• Isotopic signatures are between microbial and thermogenic coal 
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