## Introduction

Vortex in our life: Bubble ring, vortex of cigarette, etc..

-Simple experiments to mimic nature provide to understand the nature.


## Experimental Method

(1) A droplet is put on the surface of the base solution in the double cylinder.
(2) The process of the droplet is captured
from lateral and bottom sides of the cylinder using cameras.

- A size of droplet is controlled by using a

Droplet: Fe(SO4)aq+PEG
Base solution: Glycerine + PEG

syringe pomp.

- Viscosities of solutions are controlled by amount of PEG in the solutions. (The value of the droplet viscosity keeps a similar value to that of base solution in our experiments.)
$\Delta \rho$
- Density differences between two solutions are controlled by amount of $\mathrm{Fe}(\mathrm{SO} 4) \mathrm{aq}$ in the droplet solution.
- The breakup process is captured from lateral side and bottom of a cylinder.
- Temperature is controlled by thermostat bath for keeping a viscosity constantly.


## Experimental Results

- Time series of breakup and deformation of droplet
(droplet size $r=1.3 \mathrm{~mm}$, mode $m=2$ )
$\star$ Side view (Captured from a side of a container)

| 0.2 | 0.9 | 2.2 | 3.3 | 4.1 | 5.4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| + |  |  | 1 | 1 | $\dagger$ |



Vortex size increases

## Vertical disturbance becomes large.

$\star$ Horizontal view (Captured from a bottom of a container) [1]

-Polygonal deformation of a droplet [1] $m=2$
-Probability distribution $p(m)$ with several droplet sizes $r$ [2]



- Probability distribution $p(m)$ with several sample numbers $N$ [2]

m
$p(m)$ converges with increasing $N$.
$\longrightarrow p(m)$ with several $r$ is investigated in $N=50$.

- Peak values of $p(m)$ increase with $r$ and $\Delta \rho$.
- Peak value decreases
in an increasing of $\mu$.


## Discussion [2]

Phenomenological model 1
(1) Navier-Stokes equation
(RT instability: Rayleigh-Taylor instability)
$\frac{\partial \mathbf{u}}{\partial t}+\mathbf{u} \cdot \nabla \mathbf{u}=-\frac{1}{\rho_{2}} \nabla P+\nu \nabla^{2} \mathbf{u}-\frac{\rho-\rho_{2}}{\rho_{2}} g \mathbf{e}_{z}$,
(2) Diffusion equation

$$
\frac{\partial \rho}{\partial t}+\mathbf{u} \cdot \nabla \rho=D \nabla^{2} \rho,
$$

Dimensionless $\quad x^{\prime}=x / r, u^{\prime}=u r / v, t^{\prime}=t v / r^{2}$,
(1') Navier-Stokes equation
$\frac{\partial \mathbf{u}^{\prime}}{\partial t^{\prime}}+\mathbf{u}^{\prime} \cdot \nabla^{\prime} \mathbf{u}^{\prime}=-\nabla^{\prime} P^{\prime}+u \nabla^{\prime 2} \mathbf{u}^{\prime}-G \rho^{\prime} \mathbf{e}_{z}$,
(2') Diffusion equation
$\frac{\partial \rho^{\prime}}{\partial t^{\prime}}+\mathbf{u}^{\prime} \cdot \nabla^{\prime} \rho^{\prime}=\frac{1}{S} \nabla^{\prime 2} \rho^{\prime}$,
$G$ is an important factor to
determine the mode of the breakup.
*Nondimensional Parameter

$$
S=\frac{\mu}{\rho D} \quad G=\frac{\rho_{1}-\rho_{2}}{\rho_{2}} \frac{g r^{3}}{v^{2}}
$$

We proposed a new phenomenological model
O Navier-Stokes equation

$$
\frac{\partial \mathbf{u}^{\prime}}{\partial t^{\prime}}+\mathbf{u}^{\prime} \cdot \nabla^{\prime} \mathbf{u}^{\prime}=-\nabla^{\prime} P^{\prime}+u \nabla^{\prime 2} \mathbf{u}^{\prime}-G \rho^{\prime} \mathbf{e}_{z},
$$

OExpanding of the radius $R(t)$ of the vortex ring

$$
R(t)=\sqrt{R(0)^{2}+\alpha t},
$$

Experimental results provided $\alpha / v=\left(4.3 \times 10^{-2}\right) G-0.16$
Comparison with experimental results
*Theoretical results



Our experimental results agree with our theoretical arguments.

## Conclusion - We focused on the breakup of the falling droplet and investigated the numbers of the breakup.

- Our experiments of the probability distributions $\mathrm{p}(\mathrm{m})$ agree with those obtained from our phenomenological model.
-(1) RT instability and (2) Expanding of the vortex ring are important factors for the mode selection.

