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Short sum mary KONE FOUNDATION

« LASSO regression and ensembling was used to forecast 2-weekly
temperature and precipitation in Tropics and Northern Extratropics

« The method requires minimal amount of tuning and is effective in
finding the most relevant predictors

« The achieved skill was high and comparable to the skill of the
state-of-the-art dynamical model of ECMWF ey




Backg round KONE FOUNDATION

* Recently, machine learning methodology has been proposed as an
alternative paradigm for making S2S predictions (Cohen et al.,
2019) in addition to the traditional dynamical methods

« Kamarainen et al. (2019) used skillfully LASSO* regression, PCA*,
predictor lagging, and bagging* of predictor data to forecast
seasonal temperatures in Europe based on reanalyses

Glossary*

LASSO least absolute shrinkage and selection operator

PCA principal component analysis

Bagging bootstrap aggregating =~ random sampling
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Method KONE FOUNDATION

* Here the earlier method was revised to forecast the subseasonal :
time scale over the land areas of Tropics and Northern Extratropics
« Variables (SST, Z, ...) from the 20CRv2c and NCEPv1 :
reanalyses were decomposed into their leading principal i
components to be used as predictor variables R
- 2-week means of temperature (T2M) and precipitation rate ..
(PRAT) were the target variables "-"-':f:'-:::;.
 Each season, grid cell, and lead time was predicted using a »: RS
separate LASSO ensemble with 50 members .:;;;.;:;:.-
« Predictor selection and weighting in each ensemble
member is automated and based on the internal
cross-validation of LASSO
* The output was bias-corrected with ERA-5 reanalysis




Validation metrics KONE FOUNDATION

 Persistence, climatology, and reforecasts from the ECMWF :i
dynamical model were used as reference forecasts
« ERA-5 was used as observations
« Anomaly correlation coefficient (ACC) and root mean squared error :::
(RMS) were calculated from the LASSO model output, and from
the reference forecasts
« ACC and RMS values were transformed to skill scores:

o ACCfcs—l—l
ACCS = G0t 1

o RMS s
RMSS =1 — RM—Sref
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Precipitation
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Results: T2M spatial

Skill scores for
temperature indicate
that the LASSO
ensemble works well
in many regions of
Tropics

In Extratropics
LASSO ensemble
skill surpasses the
ECMWF model skill
eg. in Europe
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Red shades = LASSO ensemble outperforms the reference
Blue shades = Reference outperforms the LASSO ensemble

References/scores Near-white shades = equally good performance
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Results:

Qualitatively similar
results for precipitation
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PRAT spatial
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Red shades = LASSO ensemble outperforms the reference
Blue shades = Reference outperforms the LASSO ensemble
Near-white shades = equally good performance
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Conclusion KONE FOUNDATION

* Machine learning should be used in subseasonal forecasting




