

Will climate change impact the biogeochemical cycles of essential micronutrients?

erc

Camille Richon Alessandro Tagliabue

School of Environmental Sciences, University of Liverpool, United-Kingdom

EGU 2020, Sharing Geosciences Online

© Authors. All rights reserved

Take home messages

Will climate change impact trace metals (Zn, Cu, Co and Mn) like other macronutrients (like P or N)?

→ No

Why?

→ Because TMs and P have very different

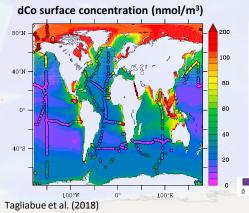
1) Distributions (R² between P and TM distributions <0.2)

2) Drivers

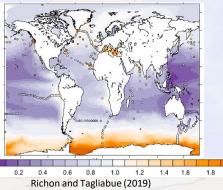
Uptake is an important driver of TM in the planktonic cells (and is itself driven by the flexible

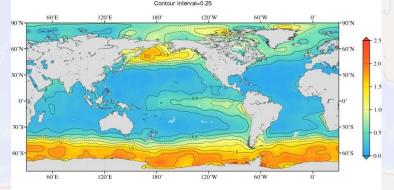
TM requirements of phytoplankton)

Scavenging is the main driver of TM particle inventory


3) Sources (Co and Mn have an important sedimentary source, which is dependent on $[O_2]$)

Introduction


- Trace metals (TM) are essential to life in the oceans
- TM are cofactors in important enzymes (Twining and Baines, 2013)


Why are trace metals so special?

- TM are different than other macronutrients (like PO₄)
- PO₄ distribution is driven by biological interactions, circulation and external sources (Martiny et al. 2019).
- TM have low dissolved concentrations (nM or pM range), also impacted by biology, external sources and circulation
- Planktonic cells have very low and flexible requirements for TM, the flexible requirements impact TM uptake by phytoplankton
- TM are particle reactive (i.e. susceptible to scavenging), which is an important driver of particulate TM cycling

dCu surface concentration (µmol/m³)

World Ocean Atlas Climatology

Annual phosphate [umol/kg] at the surface (one-degree grid)

Examples of proteins with trace metal cofactors (from Twining and Baines, 2013)

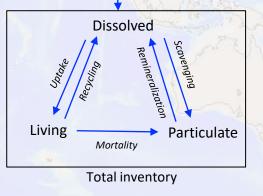
2	Metal	Proteins
àc	Cu	Plastocyanin, Cytochrome oxidase, Superoxide dismutase,
	Со	Vitamin B12
5. 10/10	Zn	Carbonic anhydrase, alkaline phosphatase, superoxide dismutase, RNA polymerase,
	Mn	O ₂ -evolving enzyme, superoxide dismutase, arginase,

© Authors. All rights reserved

Introduction

As a result of the different drivers of macro and micronutrients biogeochemistry, climate change is expected to impact TMs differently than P.

- We will focus the work on 3 questions relating to the specificities of upper ocean TM cycling:
- 1 How important is phytoplankton TM uptake for their global inventory? What drives uptake and how is it going to evolve with climate change?
- 2 How important is scavenging for particulate TM cycling? What are its drivers and how is it likely to change?
- 3 Are variations in external sedimentary sources linked to changes in O_2 important for the changes in TM inventories?


We divide the global nutrient inventories in 3 components:

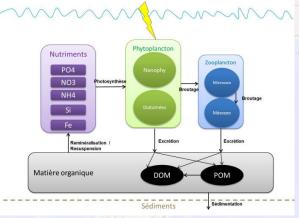
Living: Phytoplankton + zooplankton (+ living diatom frustule*)
 Particulate: organic particles + scavenged (+ dead diatom frustule*)
 Dissolved inventory

Total inventory: Living + Particulate + Dissolved

Framework: components and fluxes driving the trace metal total inventories

External sources

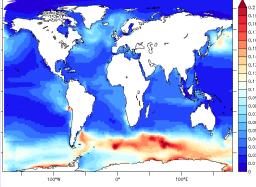
*for zinc


4

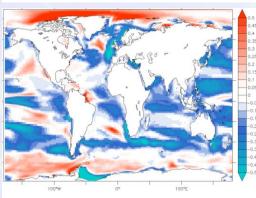
Methods

- We use a global coupled physical-biogeochemical model: NEMO/PISCES
- The model represents: 4 macronutrients (PO₄, NO₃, NH₄, Si) + 1 micronutrient (Fe)

 2 phytoplankton groups (nano + diatoms) + 2 zooplankton size classes (micro + meso)
- 4 new trace metals: Cu (7 tracers), Co (6 tracers), Zn (9 tracers), Mn (6 tracers)
- The impacts of TM on primary production are not represented in the model



IPCC AR5 Greenhouse Gas Concentration Pathways Representative Concentration Pathways (RCPs) from the fifth Assessment Report by the International Panel on Climate Change 1250 1150 RCP 8.5 1050 RCP 6.0 950 RCP 4.5 850 RCP 2.6 750 650 8 550 450 350


No evolution of riverine, aerosol and hydrothermal sources of TM. But sedimentary sources of Co and Mn vary with O₂ concentrations in the water.

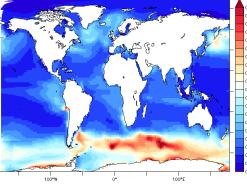
Results: Living component driven by uptake: the example of Zn

© Authors. All rights reserved

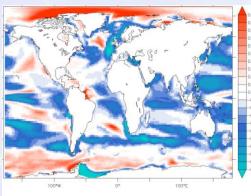
Zn in the living inventory in surface (0-100m), 1981-2005 average (μ molZn/m³)

Changes in Zn living inventory between 2081-2100 and 1981-2005 ($\mu molZn/m^3)$

Zn Living inventory = Phytoplankton + zooplankton + living diatom frustule

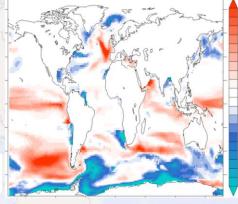

Zn living inventory represents up to 20 % of the total Zn inventory in the surface ocean.

Zn living inventory decreases in the low latitudes and increases in high latitudes by the end of the century.

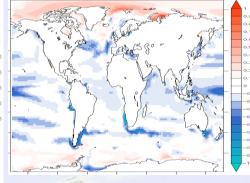


Results: Living component driven by uptake: the example the Zn

© Authors. All rights reserved



Zn in the living inventory in surface (0-100m), 1981-2005 average (μ molZn/m³)

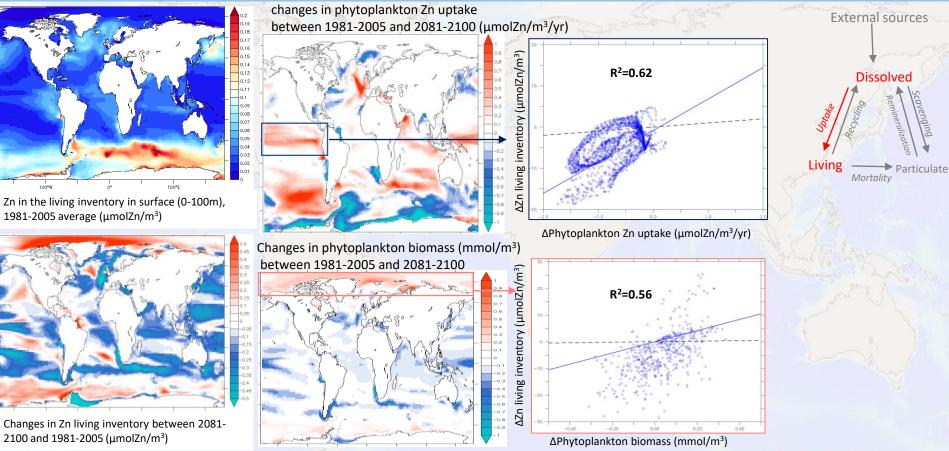


Changes in Zn living inventory between 2081-2100 and 1981-2005 $(\mu molZn/m^3)$

changes in phytoplankton Zn uptake between 1981-2005 and 2081-2100 (µmolZn/m³/yr)

Changes in phytoplankton biomass (mmol/m³) between 1981-2005 and 2081-2100

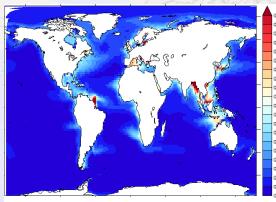
Changes in living inventory are related to both changes in phytoplankton Zn uptake and changes in phytoplankton biomass.


In high latitudes, increased living inventory seems to be explained by increased phytoplankton biomass.

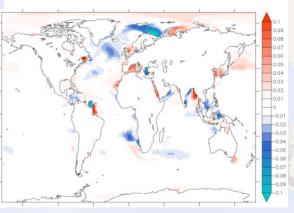
In low latitudes, the regions where living Zn increases seem to correspond to regions where Zn uptake increases.

Results: Living component driven by uptake: the example of Zn

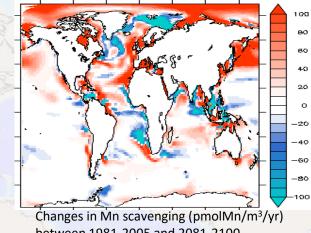
© Authors. All rights reserved



Good correlation between Zn living inventory and Zn uptake in the equatorial Pacific. In this region, the increase in uptake is due to an increase in phytoplankton Zn quotas.


In the Arctic, the increase in phytoplankton biomass correlates well with the increase in living Zn.

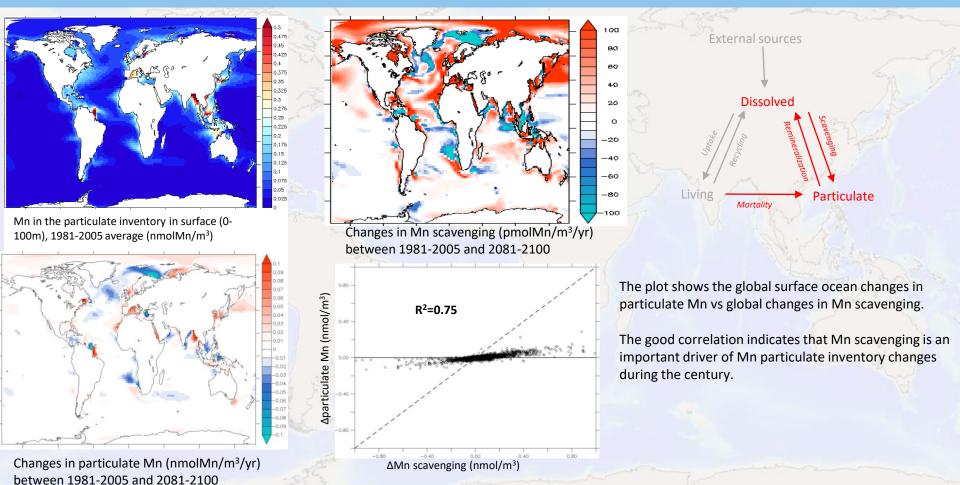
Results: Scavenging drives the particulate inventory: the example of Mn


© Authors. All rights reserved

Mn in the particulate inventory in surface (0-100m), 1981-2005 average (nmolMn/m³)

Changes in particulate Mn (nmolMn/m³/yr) between 1981-2005 and 2081-2100

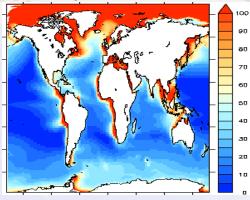
between 1981-2005 and 2081-2100


Particulate Mn represents 10 to 20% of the global Mn inventory in surface.

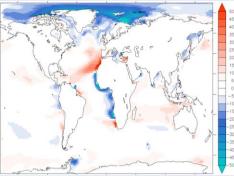
Changes in Mn particulate inventory seem to follow the changes in scavenging.

Results: Scavenging drives the particulate inventory: the example of Mn

© Authors. All rights reserved


Results: Changes in external sources influence dissolved cobalt inventory

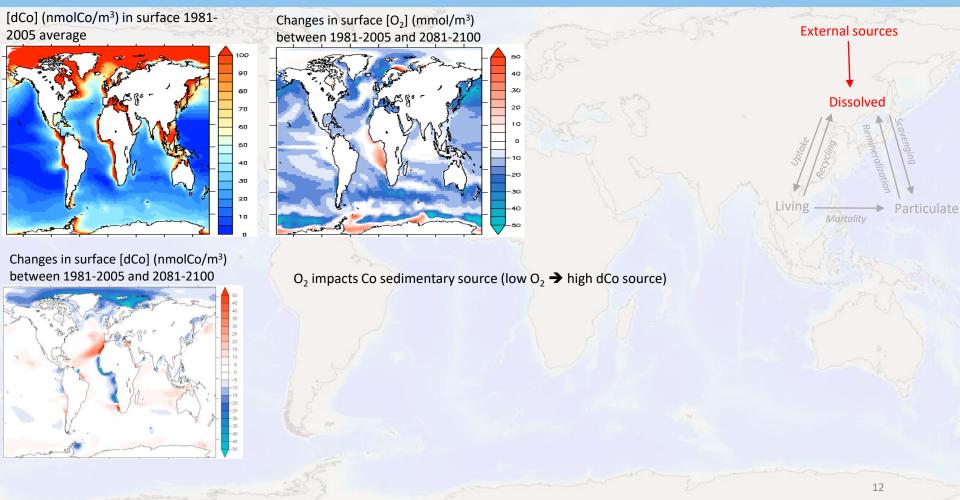
© Authors. All rights reserved


External sources

Dissolved

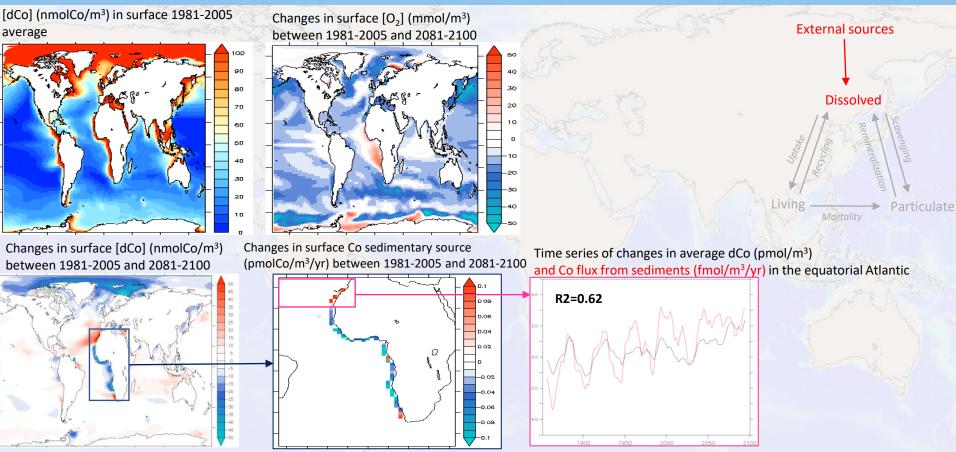
[dCo] (nmolCo/m³) in surface 1981-2005 average

Changes in surface [dCo] (nmolCo/m³) between 1981-2005 and 2081-2100


[dCo] is maximal in the Arctic and close to the coasts, because of strong sedimentary and riverine sources

Strong decrease in [dCo] in the Arctic by the end of the 21st century (associated with an increase in phytoplankton consumption and an increase in vertical transport).

In the coastal subtropical areas, we note regions of strong decrease as well as regions of strong increase in [dCo].


Results: Changes in external sources influence dissolved cobalt inventory

© Authors. All rights reserved

Results: Changes in dissolved inventories are explained by multiple factors

© Authors. All rights reserved

Along the central African coast, the changes in $[O_2]$ during the 21st century lead to a decrease in Co sedimentary source, leading to a decrease in [dCo]. In the North and South African coasts, the decrease in $[O_2]$ leads to an increase in Co sedimentary source and an increase in [dCo] by the end of the century Changes in external TM sources may significantly impact dissolved TM inventories.

Conclusion and perspectives

- Climate change impacts trace metal cycling differently than macronutrients
- Changes in TM living inventories are driven both by changes in phytoplankton biomass (i.e. increase in high latitudes, decrease in low latitudes) and uptake (which is itself driven by TM quotas in phytoplankton cells).
- The amount of TM in the particulate inventory is mainly driven by scavenging (because of the high particle reactivity of TMs)
- But dissolved TM inventories seem sensitive to changes in external sources.

→ We need scenarios for external sources evolution (integrated modelling with river runoff and aerosol scenarios)

Important mining of Co and Cu → effects on surface inventories?

→We need constrains on anthropogenic sources

• Kipp et al. 2018 showed that Ra sources in the Arctic increased in 10 years

→ Need to revisit previously sampled areas?

- Growth limitation by TM not included in the model
 - ➔ unknown feedbacks

Questions/comments? Ask in the chat, comment the presentation, or contact me at: crichon@liverpool.ac.uk