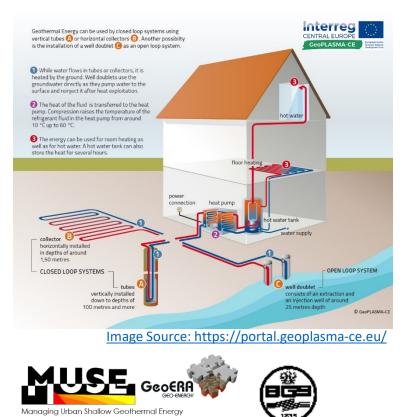
EGU2020 – Session ERE2.8 Shallow geothermal systems for building heating and cooling: geoscience and engineering approaches D956 EGU2020-19146. 1/4p #MuseGeoERA

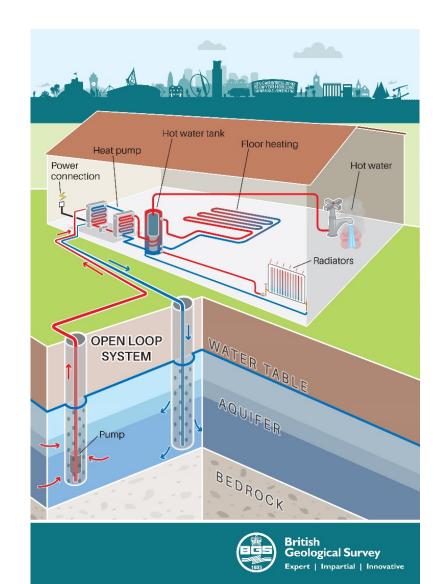

Concept for shallow geothermal opportunity mapping - UK

David Boon¹, Gareth Farr², Laura Williams², Stephen Thorpe¹, Ashley Patton², Rhian Kendall², Alan Holden², Johanna Scheidegger¹, Suzanne Self¹, Corinna Abesser³, and Gareth Harcombe⁴

¹British Geological Survey, Nottingham U.K; ²British Geological Survey, Cardiff UK; ³British Geological Survey, Wallingford UK; ⁴Cardiff Council, Cardiff UK.

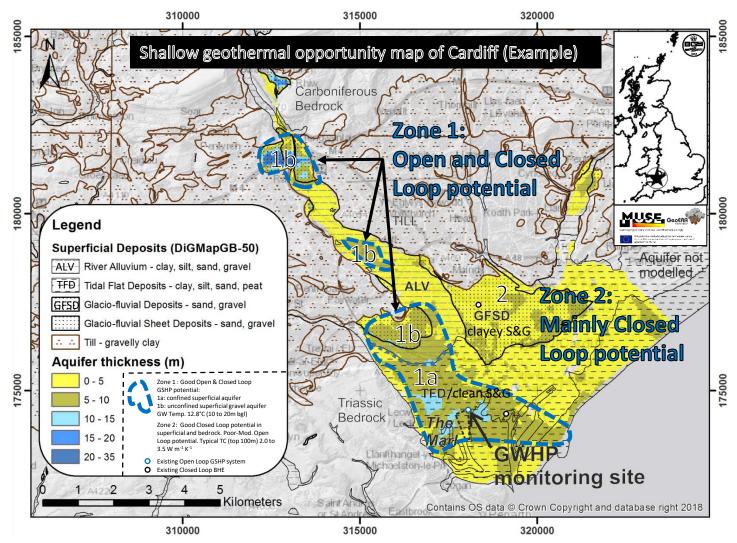
Project motivation

- Achieving Net Zero CO₂ emissions by 2050 will require rapid • and wide-scale deployment of renewable energy systems including ground and groundwater source heat pumps.
- Ground conditions are variable and can change over time. ۰
- For Open Loop systems, confidence in aquifer geometry, ٠ groundwater yield and source temperature are key technical feasibility considerations considered by consultants making business cases to clients/ investors.
- Integration of geothermal opportunity maps into Energy ٠ Master Plans will hasten and derisk the transition to decarbonised heating and cooling systems.
- We present an example of a shallow geothermal • opportunities map designed to inform stakeholders and developers and energy modellers using GIS.
- Note linking session ERE1.2 on Friday 8 May 8:30 10:15 CEST: ٠ https://meetingorganizer.copernicus.org/EGU2020/session/34714. 'GeoERA: Towards integrated European geoscience services for today's and future generations'


his project has received funding from the European Union's areement No 731166

Horizon 2020 research and innovation programme under grant https://geoera.eu/projects/muse3/

© Authors. All rights reserved


Input datasets

- Existing GSHP locations with details (e.g. BHE depth, capacity (kW), proven yields (l/s), TRT, (Not readily available in most countries!)
- Geology maps/3D models (BGS; Kendall et al 2020)
- Aquifer thickness & indicator of textural variability (Source: BGS)
- GW temperature, heads and flow direction. e.g. 13°C (Farr et al 2017; Scheidegger et al 2019)
- Groundwater chemistry / quality (BGS/CHA/NRW)
- Rock/Soil typical Thermal Conductivity (BGS)
- Building footprints/drilling constraints (OS/OSM)
- Open water bodies rivers, canals (OS/OSM)
- Buried infrastructure sewers, tunnels (OS & Utilities)
- Hazards (UXO, running sands, karst, artesian GW..)

EGU2020 – Session ERE2.8 Shallow geothermal systems for building heating and cooling: geoscience and engineering approaches D956 EGU2020-19146 3/4p #MuseGeoERA

Shallow geothermal opportunity map/guide

© Authors. All rights reserved

Modified from Boon et al. 2019. Groundwater heat pump feasibility in shallow urban aquifers: experience from Cardiff, UK. Science of the Total Environment, 697. DOI: 10.1016/j.scitotenv.2019.133847

#MuseGeoERA

20% of total Domestic demand (340,000MWh_th) is located on Geothermal Zone 1

Select Area 💿 Radius Search 🖉 Draw Shape Polygon View	Legend and Layers	
Map View Satellite & Labels	Results Area	
Cancel current tool	Sector Totals Large Heat Load Sites (0)	
S Clear map	The table below shows the sector totals within your search area.	
E-ST Long VISSIDA	Sector Name Share	Total MWh
Zone 1: Open &	Communications and Transport 0.45%	1,519 MWh
JC FOR A STATE OF MILE STATE	Commercial Offices 2.08%	7,017 MWh
Closed Loop Potentia	Domestic 91.37%	307,763 MWh
	Education 1.58%	5,200 wiWh
K TOOH 2	Government Buildings 0.5%	1,693 MWh
	Hotels 0.47%	1,574 MWh
	Large Industrial 0%	0 MWh
temore	Health 0.33%	1,128 MWh
Open Loop GSHP	Other 0.18%	598 MWh
2015 – present	Small Industrial 1.89%	6,352 MWh
	Prisons 0%	0 MWh
0.51/s proven pump rate	Retail 0.8%	2,696 MWh
SPF 50/13 = 4.5 (22kW)	Sport and Leisure 0.15%	501 MWh
	Warehouses 0.2%	678 MWh
ΔT _{GW} 2°C	District Heating 0%	0 MWh
Partie	Total heat load in Area	336,849 MWh
Comind and A (Download this search result data as a Microsoft Excel File (R	ight Click/Save As)
Local Authorities > Medium Level > Lower Level	The results for this area are shown below as a pie chart. The colours	used in the pie chart,

By integrating 3D geology with energy demand mapping energy system transformations can now consider all geothermal opportunities!

© Authors. All rights reserved