

Yihang Duan, Yunting Fang*
Institute of Applied Ecology, Chinese Academy of Sciences
University of Chinese Academy of Sciences

Global Nitrogen Deposition 1984-2016

Ackerman et al., 2018 Global Biogeochemical Cycle

Nitrogen deposition and global warming continue to profoundly influence different ecosystems, including **forests**.

IPCC, Global warming of 1.5 °C.

We designed an infrared heating system to warm up the forest to 2°C in order to:

- To understand how forest may respond to warming
- To explore the fate of deposited N in a warmer forest

MAP: 700-850 (810.9) mm

MAT: 3.9-5.4 (4.7) °C

Frost-free period: 130 days

Soil type: Clay loam

Dominant Forest stands: Larch/mixed forest

Qingyuan Forest Warming

- 3 warming and 3 control plots
- 24-7 warming by infrared heater from Apr. to Nov.
- 2°C warming of top10 cm mineral soil layer
- Auto temperature control and measure system

Control

Mineral soil warming

With this infrared heating system, warming plots maintain 2 °C temperature difference above the control plots in the top mineral soil layer.

Whole-soil warming

Stable warming were also achieved in the whole-soil profile after continuously heating.

¹⁵N labelling-Pulse Addition

- Add ¹⁵NH4¹⁵NO3 (50 atom %) to the forest floor, addition dose 50mg ¹⁵N/m²
- Dissolve the tracer in water and uniformly spray above the ground vegetation with backpack sprayers

Plant sample

Grass Litter O layer 0-10 cm

10-20 cm

20-40 cm

Soil Sample

Soil water sample

Short-term change of applied ¹⁵N in different N stock

- In the short-term(90d), warming had little effect on the redistribution of ¹⁵N in grass, litter and organic layer
- In the short term(90d), warming increased the retention of ¹⁵N in the top mineral soil layer

Soil leaching of NO₃/NH₄ from June to October during warming

- Warming decreased NO₃ leaching in the early warming months (June and July)
- Warming had no effect on the NH₄ leaching from soil

Recovery of ¹⁵N in different N stock under the forest floor

Summary

- In the short-term of ¹⁵N application and warming (90d), bulk of the ¹⁵N was located on grass, litter, organic;
- Warming could increase the retention of deposited N in the top mineral soil layer (0-10cm);
- Warming decreased the leaching of NO_3 in June and July, this relocated nitrite by warming maybe uptake by trees or lost as gas;
- Warming may largely affect the redistribution of deposited N in the early growing season, namely June and July.

Special thanks

