

Diode laser spectrometer for NO₂ quantification: Absolute laser spectroscopic and direct NO₂ concentration measurements for atmospheric monitoring within the EMPIR project MetNO₂

Javis A. Nwaboh¹, Zhechao Qu¹, Gang Li¹, Mi Eon Kim¹, Jan C. Petersen², David Balslev-Harder², Olav Werhahn¹, and Volker Ebert¹

¹Physikalisch-Technische Bundesanstalt (PTB), 38116 Braunschweig, Germany ²Dansk Fundamental Metrologi A/S, 2970 Hørsholm, Denmark

EGU 2020 - AS5.11

© PTB 2020. All rights reserved

Due to the situation with Covid-19, DFM could not provide results to this presentation

1. Introduction

2. direct Tunable Diode Laser Absorption Spectroscopy (dTDLAS)

3. Nitrogen dioxide (NO₂) measurements

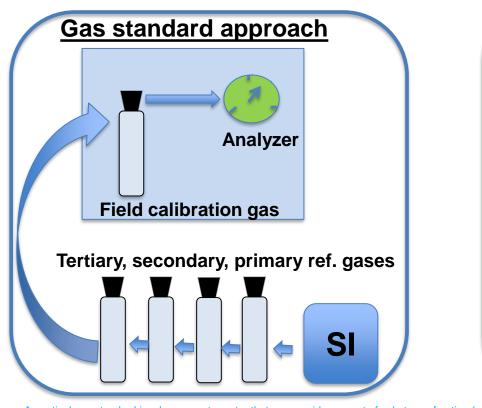
4. Conclusions

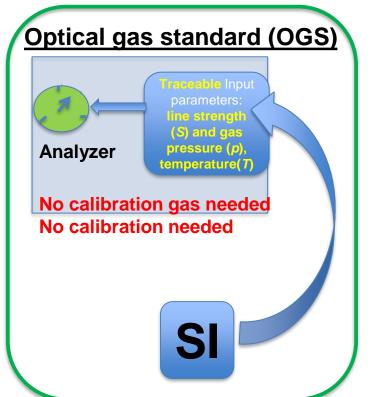
□ Nitrogen dioxide (NO₂) air pollutant e.g. from fuel combustion \rightarrow human health risk

Standard reference method (SRM) for NO₂ emissions: Chemiluminescence (European standard EN 14211:2012)

- ❑ Using chemiluminescence, NO₂ is measured only indirectly, i.e. NO₂ calculation: difference between NOx and NO after conversion of NO₂ to NO
 - Issue: other species (e.g. NOy: HNO₃, HNO₂, N₂O₅) converted to NO, can cause an overestimation in the NO₂ results

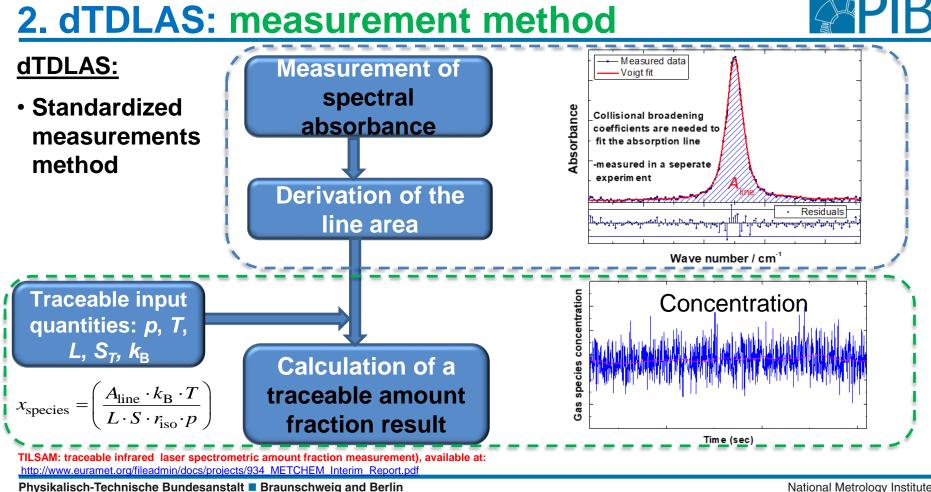
□ Alternative instruments for **direct highly specific** NO₂ detection required


e.g. an Optical gas standard" (OGS) based on direct tunable diode laser absorption spectroscopy (dTDLAS)

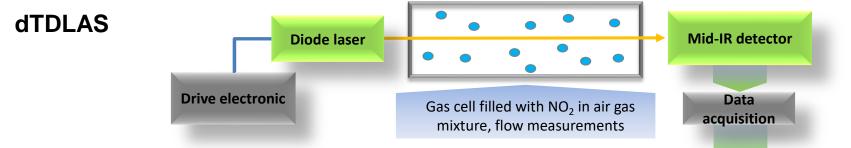

An OGS:

- o a dTDLAS spectrometer directly providing SI-traceable gas concentration
- can complement gaseous standards for calibrations, as an instrumental reference (similar to the Ozone Standard Reference Photometer)

2. dTDLAS: Optical gas standard (OGS)

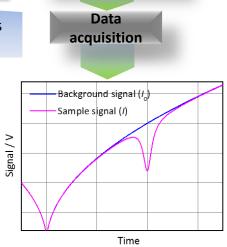


"An optical gas standard is a laser spectrometer that can provide amount of substance fraction (concentration) results that are directly traceable to the SI"


Physikalisch-Technische Bundesanstalt Braunschweig and Berlin © PTB 2020. *All rights reserved*

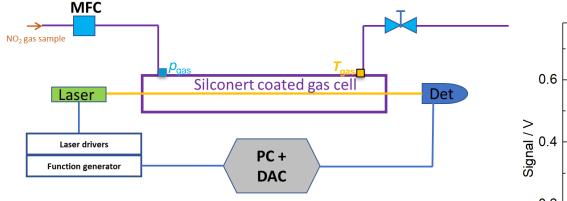
© PTB 2020. All rights reserved

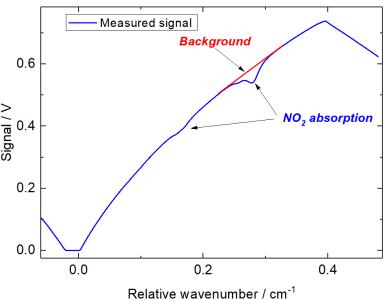
2. dTDLAS: schematic



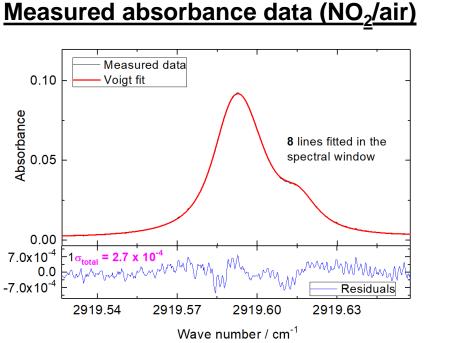
• From the Beer-Lambert-law

$$I(\tilde{v},L) = I_0(\tilde{v}) \cdot Tr(t) \cdot \exp\left\{\frac{-S_T \cdot r_{iso} \cdot g(\tilde{v} - \tilde{v}_0) \cdot L \cdot x_{species} \cdot p_{total}}{(k_{\rm B} \cdot T)}\right\} + E(t)$$


The quantity x_{species} is the concentration of e.g. NO₂


3. NO₂ measurements: setup, typical data

<u>Setup</u>


Typical signal (979 µmol/mol NO₂/ air)

- Laser emitting in the mid-infrared
- Laser wavelength rapidly swept
- Sampling lines + cell → Silconert coated

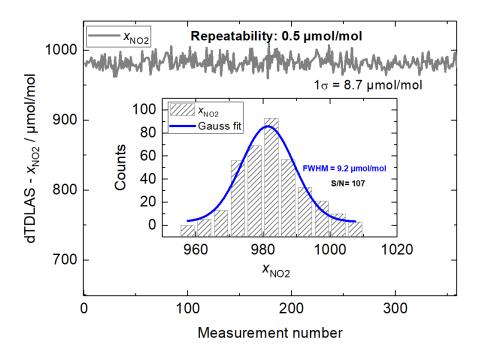
3. NO₂ measurements: spectra, uncertainty

	Uncertainty	budget
--	--------------------	---------------

	Mode	el	
~ —	A _{line}	$\cdot k_{\rm B} \cdot T$)
$x_{\rm NO2} =$	$L \cdot S$	· p _{total}	

		r total		
Parameter	Value	Relative standard uncertainty (k = 1) / %	Index (% uncertainty contribution)	
Pressure	108.5 hPa	0.20	0.10	
Temperature	294.3 K	0.10	≤0.05	
Path length	0.82 cm	0.13	≤0.05	
Line strength (HITRAN value)	5.425·10 ⁻²¹ cm/molecule	≥2 and <5.00*	96.00	
Line area	0.001097 cm ⁻¹	1.00	3.80	
NO ₂ concentration (x _{NO2}) result	978.9 µmol/mol	5.10+ (combined uncertainty)	-	

*HITRAN line strength uncertainty: ≥ 2 % and <5 %, upper limit used. *Computed taken the line strength unceratinty as 5 %.

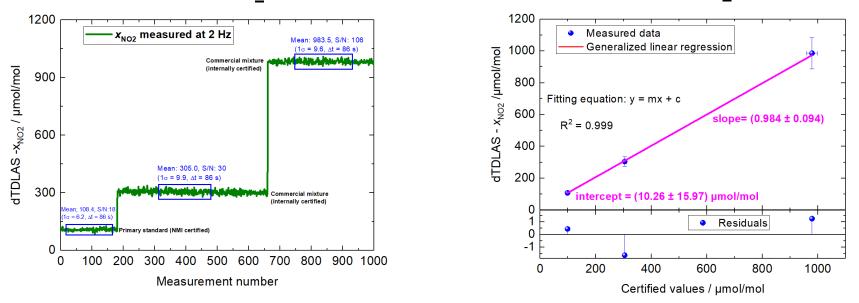

Commercial certified NO₂ concentration: (979±20) µmol/mol

<u>Traceability:</u> Traceability of the results is addressed via the traceability of input paramaters such as the gas pressure and temperature that are traceable to respective PTB standards

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin
© PTB 2020. All rights reserved

PE

Repeated dTDLAS NO₂ measurements


- Repeatability of 0.5 µmol/mol (0.05 %) @
 982.5 µmol/mol, absorbance: 10⁻⁴ range
- Inset: a histogram depicting an approximate normal distribution around the mean value of the NO₂ concentration results. A gauss profile is fitted to the data, resulting to a full width at half maximum (FWHM) of 9.2 µmol/mol

System linearity (NO₂ in air)

System response (NO₂ in air)

- System response within 0.5 seconds
- A good linearity (slope = 0.984±0.095, k = 2) between measured dTDLAS - x_{NO2} vs. certified values

4. Conclusions

- We have presented a lab-based realization of a new calibration-free dTDLAS NO₂ spectrometer (specially designed for direct NO₂ concentration measurements in air)
- □ The standard uncertainty of the dTDLAS NO₂ concentration results is 5.1 %, and will be in the 2.0 % range if the lower bound HITRAN uncertainty (≥ 2 % and <5 %) was taken for the line strength
- □ Good agreement (slope: 0.984 ± 0.094, k = 2) was measured in a first validation exercise, such that the dTDLAS instrument comes as a high potential "OGS"

Outlook: next,

- □ adapt the spectrometer for in situ ambient NO₂ measurements by an adapted path length (30 m or 200 m \rightarrow a few ppb range NO₂ resolution)
- □ PTB to improve uncertainty figures for the line strength \rightarrow improving the accuracy of the NO₂ concentration results

Acknowledgement:

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

PTB participates as an unfunded partner in the EMPIR MetNO₂ project MET^(http://empir.npl.co.uk/metno2/)

References: J. Nwaboh, Z. Qu, O. Werhahn, V. Ebert, 3rd International Workshop on Oxy-Fuel Combustion, 04-05.03.2020, Montabaur, Germany (2020)

PTB is member of the European Metrology Network for Climate and Ocean Observation (https://www.euramet.org/europeanmetrology-networks/climate-and-ocean-observation/)

Thanks for your attention!

© PTB 2020. All rights reserved