Performance of upcoming CO2 monitoring satellites in the new high-resolution inverse model CTDAS-WRF

Friedemann Reum^{1,*}, Liesbeth Florentie², Wouter Peters², Matthieu Dogniaux³, Cyril Crevoisier³, Bojan Sic⁴, and Sander Houweling^{1,6}

1 SRON Netherlands Institute for Space Research, Utrecht, Netherlands (* f.reum@sron.nl) 2 Wageningen University and Research, Wageningen, Netherlands 3 CNRS-LMD, Paris, France 4 NOVELTIS SAS, Labège, France 5 Vrije Universiteit Amsterdam, Amsterdam, Netherlands

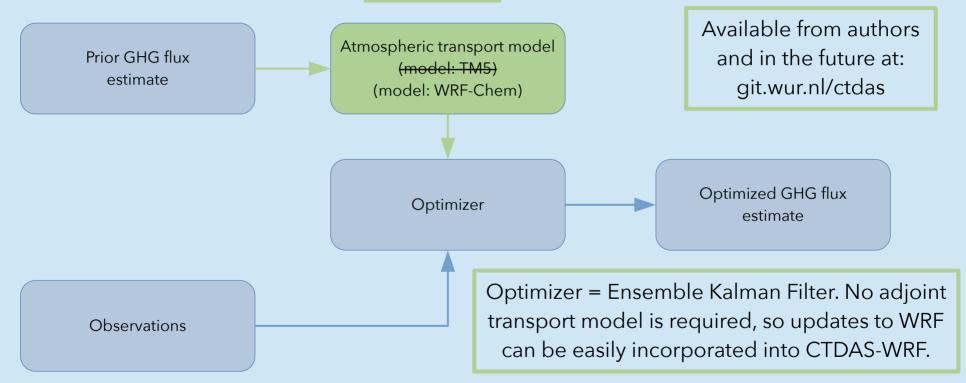
Anthropogenic GHG emission monitoring

• Active EU H2020 projects for advancing our capability to monitor anthropogenic CO2 emissions from space:

- Constellation of ~3 satellites ("CO2M") (global daily coverage)
- che-project.eu

- Fleet of about 20~30 nano satellites (global daily coverage)
- scarbo-h2020.eu

Friedemann Reum: CTDAS-WRF and its application for SCARBO #sh

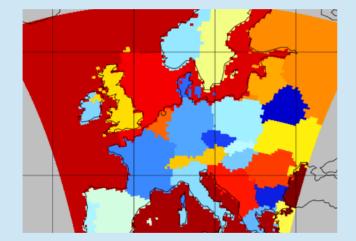

On WRF-CHEM as GHG transport model

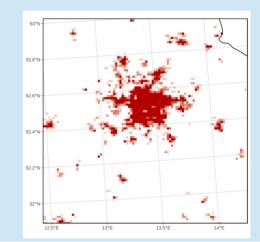
- WRF has a large active user base
- Ongoing development
- Domain nesting allows simulating transport at resolutions down to LES scale
- WRF-Chem allows simulating atmospheric (trace gas) transport and chemistry
- WRF-GHG = greenhouse gas transport module¹

1: Beck, V., et al.: The WRF Greenhouse Gas Model (WRF-GHG) Technical Report, [online] Available from: https://www.bgcjena.mpg.de/bgc-systems/pmwiki2/uploads/Download/Wrf-ghg/WRF-GHG_Techn_Report.pdf, 2011. Friedemann Reum: CTDAS-WRF and its application for SCARBO #shareEGU20

New inverse model: CTDAS-WRF

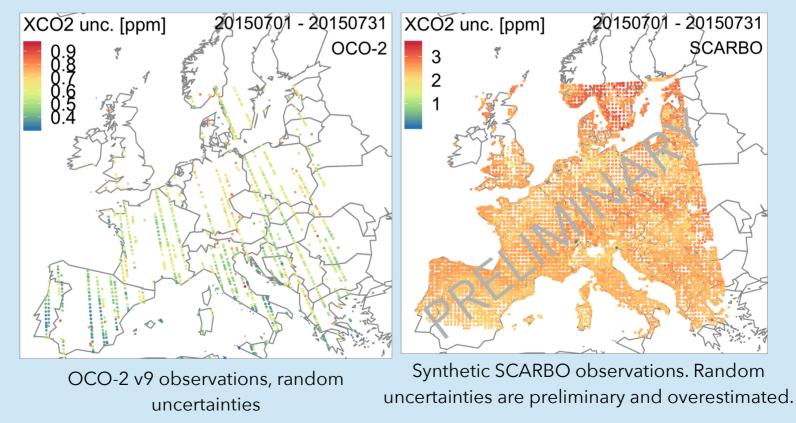
Flowchart of inverse model CTDAS² CTDAS-WRF


2: van der Laan-Luijkx, I. T., et al.: The CarbonTracker Data Assimilation Shell (CTDAS) v1.0: Implementation and global carbon balance 2001-2015, Geosci. Model Dev., 10(7), 2785-2800, doi:10.5194/gmd-10-2785-2017, 2017.


Friedemann Reum: CTDAS-WRF and its application for SCARBO #sha

CTDAS-WRF: current capabilities

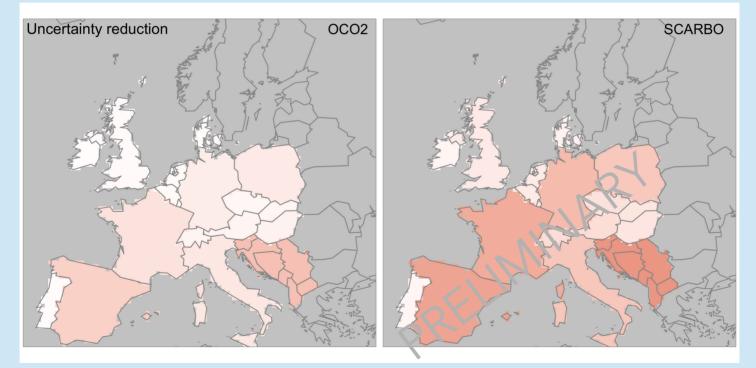
- Optimizes passive tracer fluxes based on total column observations
- Applications: continental scales down to point sources.
- Examples:


Domain	Europe	Berlin
Resolution	36 km	1.3 km resolution (inner nested domain)
Target	Country-scale CO2 OSSE (SCARBO)	Anthropogenic CO2 OSSE (CHE)

Friedemann Reum: CTDAS-WRF and its application for SCARBO

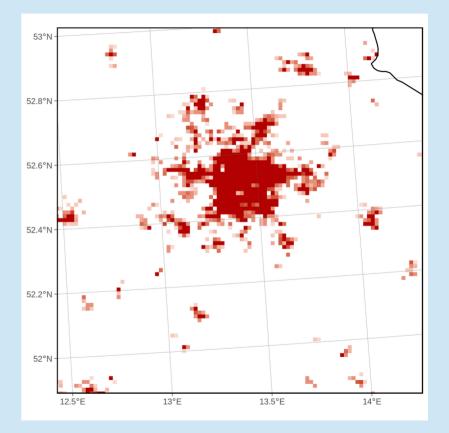
Application of CTDAS-WRF: OCO-2 vs SCARBO

• Compare OCO-2 vs SCARBO flux estimation capability in CTDAS-WRF.



Friedemann Reum: CTDAS-WRF and its application for SCARBO

OCO-2 vs SCARBO


 Daily flux uncertainty reduction: SCARBO has the potential to outperform OCO-2 (even with preliminary overestimated random uncertainties)

Random flux uncertainty reduction = $1 - \sigma_{optimized} / \sigma_{prior}$. Darker = better. Scale not shown because results are preliminary. Friedemann Reum: CTDAS-WRF and its application for SCARBO #shareEGU20

Outlook: city-scale flux optimization with CO2M

- City-scale CO2 emissions are one target of planned CO2M mission
- We plan to simulate CO2M's capability to retrieve CO2 fluxes from Berlin, Beijing and Shanghai
- Basis is synthetic CO2M uncertainties (Johan Strandgren, DLR)

Urban area fraction in Berlin domain

Friedemann Reum: CTDAS-WRF and its application for SCARBO

Summary

- Developed CO2 flux optimization model CTDAS-WRF, which is a modification of CTDAS that uses WRF-Chem for atmospheric transport
- Code available from authors and in the future from git.wur.nl/ctdas
- Possible applications include scales from continental fluxes to point sources
- Preliminary SCARBO results show its potential benefit over OCO-2

Acknowledgements:

This work has received funding from the European Union's H2020 research and innovation programme under grant agreement No 769032 (SCARBO) and 776186 (CHE).

Friedemann Reum: CTDAS-WRF and its application for SCARBO #shareEGU20

