

Using large ensembles to investigate the impacts of climate extremes

Nathalie Schaller and many others!

EGU Vienna, May 2020

Motivation

- Studying extreme events begs for a large sample size
- Impossible to say something about a 1-in-100 year event with 30 years of data
- (Ok, ok, there is extreme value theory)
- But extreme events often also call for high spatial and temporal resolution
- Convection-permitting models needed to investigate flash floods or cloudbursts
- How to balance both given limited computer ressources? °CICERO

A few key messages

- usually does not require high spatial resolution but a large ensemble small sample of downscaled events
- Assessing changes in frequency/intensity/duration of heatwaves • However, health impacts of heatwaves might be better served by a
- Winter precipitation events/floods occuring at mid/high latitudes are likely caused by large-scale processes, no need for proper representation of convection
- Summer precipitation events/floods however... ideally both
- For floods: type of catchement highly important. If it is small, then high resolution needed

Heatwaves and blocking (Schaller et al., 2018, ERL)

°CICERO

a) European region

Area-weighted average heatwave magnitude

Three large ensembles: 2003 heatwave not that exceptional according to large ensembles but only 1 ensemble member similar to 2010 heatwave

b) Russian region

Area-weighted average heatwave magnitude

Heatwaves and health

- Ongoing H2020 EXHAUSTION project
- 1 single ensemble member with CESM2 (historical+three scenarios)
- Downscaling with WRF-Chem, DEHM and SILAM
- Hourly (!) output needed: large ensemble unfeasible
- Combined health impacts of heat and air pollution, mostly from wild fires
- See: www.exhaustion.eu

Winter flood in UK (Schaller et al. 2016, NCC)

- Long-lasting event, big catchment: coarse resolution sufficient
- Attribution of a 1-in-100 yr event: large ensemble needed
- 134,354 simulations done through the citizen science project weather@home (that was probably too many...)

Winter flood in UK (Schaller et al. 2016, NCC)

- However, in impact studies, each step of the modelling chain adds uncertainty
- In this case, there was a clear attributable signal in the RCM precipitation output, but not for the number of properties at risk of flooding in the Thames catchment

Autumn flood in Norway (Schaller et al. in revision)

- 3 days event, small catchment: high spatial and temporal resolution needed
- Storyline approach theoretically 1 single event, but we produced a 10 initial conditions ensemble nevertheless
- Main conclusions however not strongly affected by the ensemble size
- But peak streamflows more realistic thanks to the high resolution!

AROME is the high resolution regional model, EC-Earth the GCM

Conclusions

- Large initial conditions/perturbed physics ensembles, considering all scenarios and all CMIP6 models: having more is not always better!
- many degrees of freedom.
- Speaking as a, and to, climate scientists: don't underestimate the what happens in the atmosphere is the easy part!

Pretty obvious, but designing a study and its simulations is a very important step, there is no «one size fits all» method. Each extreme event is unique.

• In fact, it might just make it impossible to draw a conclusion if there are too

uncertainties introduced by hydrological and other impact models. Often

nathalie.schaller@cicero.oslo.no

- cicero_klima
- cicero.oslo.no W
- cicerosenterforklimaforskning f

