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“Classical” sub-critical shocks (05 , > 45)

Dispersive:

* Type 1 —downstream B oscillations
(perpendicular)

* Type 2 —upstream B oscillations (quasi-
perpendicular)
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Resistive:

* No oscillations in B ahead of ramp

* Smooth transition to the downstream region
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“Classical” sub-critical shocks (6g,, > 45)

The magnetic profile of both types of quasi- g v B S
perpendicular low Mach number shock:

* Have a smooth transition across the ramp

* Do not exhibit an overshoot or any
downstream oscillations 5

e Effects from ion reflection are expected to
be minimal

CRITICAL FAST MACH NUMBER
Kennel [1985]
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A new type of very-low Mach number shock
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W] \/\,k e S~ Balikhin et al. [2008]: A new structure of sub-
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10} - critical shock observed at Venus:
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& o polarised along the mean magnetic field.
35 Balikhin et al. [2008]
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A new type of very-low Mach number shock - cont.

1.5+

Balikhin et al. [2008]: theory developed and effect shown
in numerical analysis:

* Non-gyrotropic downstream ion distribution

* Magnetic pressure oscillations develop to cancel the

W ion pressure oscillations

e Gyrophase mixing cause oscillations to subside (due to
ion temperature distribution)

* Can be observed when fis very small

W e Suitable plasma data not available for verification

Balikhin et al. [2008]
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First observations at the Earth of kinematic” shocks

20
g EWMWM [CHEClous Wind- ‘a’: Shock observed in THEMIS C data (Pope et al. 2019):
N 5L ]
2§ * Very-low Mach number (M,=1.2).
E 10} | : . i- ' -71°
e QMM pope et al. [2019] Quasi-perpendicular (65, 69-71°).
0 [ N I N N N N T A NN A N NN [N Y A NN Y Y Y N A N NN H A N N TR B |
1200 1800  00:00 0600 1200 1800  00:00 e Same profile in the magnetic field as Balikhin et al. [2008].
29/03/2011 30/03/2011
T e @] * Observed at SZA (solar zenith angle) 57° and 57.7 R; altitude.
. L] . -
R B~ Wisj * Abnormally high, but not unprecedented (e.g. Fairfield et al.
e e '; [2001] 58 R at 6, , = 53¢). Consistent with the Jerab et al.
20 ‘.WM~WMWM| e [2005] model for the observed solar wind.
E -280 | ]
T Pope et al. [2019] s « Simultaneous magnetic field and plasma data allowed the
e T T T N‘“’\ @] non-gyrotropic downstream distribution to be observed and
# 1l iyl et the out of phase oscillations in the plasma and magnetic
< o o] | — E;cw L pressures to be resolved for the first time, verifying the
0 5 10 15 20 25 30 35 40 45 50 55 60 theory in Balikhin et al. [2008].

Time in minutes after 08:00:00 UT
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Data and Methodology

* The magnetic cloud phase of an ICME provide the conditions for such “kinematic” shocks
to develop, e.g. very-low Mach number and low B (Pope et al. 2019).

* A survey of ICME magnetic clouds encountered by Venus during the entire Venus Express
mission (previously compiled by Vech et al. 2015), has been conducted to identify the
Venus bow shock crossings during these periods.

* Data from the magnetic field instrument MAG (Zhang et al. 2007) is presented here.
* In total 92 shock crossings were identified.

* These were usually part of a sequence of shocks crossings over a short time interval. This is
due to small fluctuations in the very-low solar wind Mach number in the magnetic clouds,
the primary driver for the Venus bow shock altitude (Russell et al., 1988), creating a shock
that oscillates significantly across the spacecraft trajectory.
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Data and Methodology - cont.

* Due to the reliance on single spacecraft measurements with low-sample rate, the shock
normal for each of the shocks studied, is determined from the magnetic field data using both
minimum variance analysis (MVA) and the coplanarity theorem (CP).

 The shock normal is used to determine the angle between the average upstream magnetic
field and shock normal direction 6; |

* The shock normal calculated from a model bow shock and observed solar zenith angle was not
used due to the often abnormally high altitude of the observed shocks.

* The Alfvéen Mach number for each shock was estimated from the magnetic field using M, g =

\/R (R +1)/2, where R = B;/B,, (ratio of downstream to upstream magnetic field
magnitude). This is valid for cold perpendicular shocks (Gedalin et al. 2015). Pope et al. (2009)
recently showed good agreement between this estimate and the directly calculated value M, g
for the “kinematic” shock observed at the Earth using THEMIS data.
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Example 1: 10t September 2006

Shock 1a

4,:}.
AE
3z

10:08:08 10:08:33 10:08:57 10:09:21 10:09:45
Sep 10, 2006
shock 1c

36
iz
11411 101445 101518 1001 5:53 101827

Sep 10, 2006
Shock 1e

44

40 T o™
35 4
32 4

102118 102224 10:23:30 10024:36 1002542
Sep 10, 2006

Shock 1g

44 ]
40
36
3z

11:0247 11:02:00 11:03:43 11:04:26 11:05:08
Sep 10, 2006

Shock 1b
sl ]
9% ]
3z
100855 10:10:25 1010558 10:11:25 10:11:55
Sep 10, 2006
=hock 1d
44
40
36
3z
11725 101810 101 8:55 101940 10:20:25
Sep 10, 2006
Shock 1f
44 N
401
il
32 3
10:58:56 10:59:28 11:00:02 11:00:35 11:01:08

Sep 10, 2006

Shock 8., (°) Opm., (°) Map SZA (°) A (Ry) Am (Ry)
la 76 70 120 112 0.4 2.57
1h 79 79 120 113 0.4 2.58
le 78 63 119 113 0.3 2.50
1d 84 83 119 113 0.3 2.61
le 87 70 122 113 9.2 2.62
1f 82 80 1.23 116 8.6 2.80
lg 79 78 1.22 116 8.6 2.82

A sequence of seven shock crossings in under 1 hour:
e All quasi-perpendicular

* All had similar very-low Mach number and 6; |

e Occurred in the night side flank

e Similar downstream magnetic field profiles

* This includes shocks previously studied by Balikhin et
al. [2008]
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Example 2: 17th October 2011

Shock 2a

35

agt e
25

05:08:54 05:10:03 05:11:12 051221 05:13:30
Oct 17, 201

shock 2c

asr S
gt
a5t

05:27:08 05:27:59 05:28:49 05:29:38 05:30:29
Oct 17, 2011

shock 2e

35
0
25

20
05:33:10 05:33:48 05:34:26 05:35:04 05:35:42
Dt 17, 2011

Shock 2g
45

_4.:}.
57
3{:'.
25.

05:4514 05:46:35 06:47:56 054817 05:50:38
et 17, 2011

Shock 2b
e ¥

35
30
25

0516:42 05:17:23 05:18:04 05:18:45 051926
Oct 17, 201

shock 2d

a5

:}D -

257

05:30:37 05:31:15 05:31:53 053231 05:33:08

Oct 17, 2011
Shock 2f

35

30

25

05:35:50 05:37:06 05:38:22 05:39:38 05:40:54
Oct 17, 2011

Shock  fga,., (°) fpn, (°) Map SZA(®) A(Ry) A (By)
2a 72 7l .24 59 3.90 0.92
2h ND (8 1.33 58 3.68 0.91
2e G G5 .37 55 3.29 .58
2d 81 72 1.37 54 3.11 0.87
2e GT = L.40 54 3.08 (.87
2f Th (s 1.6 h2 200 =0
priiy 74 ] .56 50 2.57 (0.534

A sequence of seven shock crossings in under 1 hour:

All quasi-perpendicular

The Mach number is very-low, but increases through the
sequence

Occurred in the dayside with SZA 50-59°

The magnitude of the downstream oscillations and the
number of complete cycles reduces as the Mach number
increases through the sequence.
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Example 3: 11th September 2006

Shock 3a

T
09:19:34 09:20:37 09:21:40 09:22:43 (0 23:46

Sep 11, 2006
Shock 3d

36
M \MA/\R/_‘\M
a2
09:56:56 09:57.06 095716 09.57.26 095736

Sep 11, 2006
Shock e

11:53:13 11:56:15 11:5%17 12:02:19 12:05:21
Sep 11, 2006
Shock 3g

32 "
30
28
26

121306 121428 121552 121715 121838
Sep 11, 2006

REEE

uT

Shock 3b
09:25:35 09:26:15 09:26:55 09:27:35 09:28:15

Sep 11, 2006
Shock 3c

W -~
083717 094050 09ed44:23 094756 09:51:29

Sep 11, 2006
Shock 3f

12:08:01 12:09:09 121017 12:11:25 12:12:33
Sep 11, 2006
Shock 3h

121818 121931 12:20:44 12:21:57 12:23:10
Sep 11, 2006

B EE 8

ERER

(]

" '

Shock g, (°) #Ba, (°) Map SZA(°) A(Rv) A, (By)
aa 70 49 1.07 s1 0,72 1.35
ah = (4 1.0 42 050 1.5
3 (i) Gid 1.07 22 10,0 1.37
ad T 53 1.04 =3 10,2 1.38

3e M 47 106G bt 11.3 1.51
af Td nd 1.07 59 [ 1.3 .52
3g hs 55 .07 =0 [1.4 1.53
3h 4 i34 100G =0 11.4 [.53

A sequence of eight shock crossings over a 3 hour:

All quasi-perpendicular, but 0 , varies from 54° to 85° (taken as
the maximum value of the two vales estimated for each shock).

All had similar very-low Mach number and towards the bottom
end of the range of all shocks observed in the study.

Occur just dayside of the terminator (SZA 81-89°)

Downstream oscillations appear to be more likely to be present
for shocks with larger 6 , (e.g. 3a, 3b and 3d) than those with
smaller 65 , (e.g. 3e, 3g and 3h).
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Effect of M, and 05, on Kinematic Relaxation

+ Downstream oscillations x

1 8 F | * No downstream oscillations %
Potential downstream oscillations

o Overshoot only

MA,E
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0;,, is the average of the CP and MVA derived values

Most of the shocks with downstream oscillations are
clustered in the region with 8 , > 50° and M, < 1.4.

The transition to more quasi-parallel and higher Mach
numbers is indicated by shocks with potentially some
evidence of downstream oscillations or of an
overshoot.

The transition regions provide evidence that kinematic
relaxation is only clearly observable for very-low Mach
number quasi-perpendicular shocks.

Evidence of just an overshoot is likely to be due to the
formation of less than one period of the oscillations,
i.e. the oscillations are quickly damped.
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Spatial dependence of the observed shocks

* SZA<B60°
60°<SZA<80°

» 80°<SZA<100¢°
+ 100°<SZA<120°
% SZA>120°

B
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* *
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¥ x ek + %
*¢ W** * * Fk h

1.2 13 14 15 16 17 18 19

Very-low Mach number shocks identified in Venus Express
data cover SZA's from 40° — 137°,

Kinematic relaxation for quasi-perpendicular shock geometry
is observed throughout this range of SZA. This indicates that
when the solar wind conditions are suitable, any part of the
bow shock is likely to form a structure in which kinematic
relaxation is the dominant energy re-distribution mechanism.

There is a tendency for the bow shock to move to a higher
altitude as the Mach number falls, consistent with previous
studies (Russell et al. 1988). The effect is more pronounced for
M, < 1.6, which is below the range previously studied. Above
this value the altitude increase is less than a factor of two, but
increases to greater than seven as M, = 1 is approached.

The SZA does not have a noticeable affect on the abnormal
increase in shock altitude as the Mach number decreases.
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Conclusion

KEY FINDING: Evidence of the downstream oscillations created by kinematic relaxation is only
observable in shocks which are quasi-perpendicular and have very-low Mach number.

During instances in which Venus interacts with the magnetic cloud phase of an ICME, 92 very low
Mach number shock have been identified using Venus Express magnetic field data.

Shocks with clear evidence of kinematic relaxation are clustered in a region with 63 , > 50° and M, <
1.4. The transition from this region to more quasi-parallel and higher Mach numbers is indicated by
the shocks with potentially some evidence of downstream oscillations or only an overshoot.

Shock crossings which show kinematic relaxation are observed across a range of SZA from 40° — 130°.
This indicates that it is likely that all locations of the Venus bow shock can form a structure in which
kinematic relaxation is the dominant energy re-distribution mechanism.

The altitude of the observed shocks are generally considerably higher than the Venus model bow
shock and is correlated with a reduced M,. This is consistent with previous results (Russell et al.
1988), but the increase is more pronounced for M, < 1.6 which is below the range previously studied.
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