Global simulations of the atmosphere with 1.45 km grid-spacing with the Integrated Forecast System Peter Düben¹, Nils Wedi¹, Sami Saarinen², Christian Zeman¹

European Centre for Medium-Range Weather Forecasts¹ and Eidgenössische Technische Hochschule Zürich²; Contact: peter.dueben@ecmwf.int

1. Outline:

We show results for simulations with the Integrated Forecast System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF) at cloud-resolving resolution that allow to switch off the parametrisation of deep convection. We investigate the impact of hydrostatic vs. non-hydrostatic equations and the size of the time step on model fidelity and analyse scalability.

IFS can in principle handle very long time steps due to the semiimplicit semi-Lagrangian time stepping scheme. The model can run in both hydrostatic and non-hydrostatic mode.

These results have been published in:

Dueben, P. D., N. Wedi, S. Saarinen, and C. Zeman, 2020: Global simulations of the atmosphere at 1.45 km grid-spacing with the Integrated Forecasting System. J. Meteor. Soc. Japan, 98

4. Realism:

Scaling results on the Piz Daint supercomputer. Nonhydrostatic simulations are much more expensive when compared to hydrostatic simulations since they require additional transforms between spectral and gridpoint space.

2. Six model runs with 1.45 km grid-spacing (all in single precision):

Run Identifier	Hydrostatic?	Topography	Vertical levels	Vertical disc.	Timestep and number of PC iterations
H-FE-DT120	Yes	Yes	137	Finite element	120 s/0 PC
H-FE-DT60	Yes	Yes	137	Finite element	60 s/0 PC
H-FD-DT60	Yes	Yes	62	Finite difference	60 s/3 PC
NH-FD-DT60	No	Yes	62	Finite difference	60 s/3 PC
notopo-H-FD-DT30	Yes	No	62	Finite difference	30 s/2 PC
notopo-NH-FD-DT30	No	No	62	Finite difference	30 s/2 PC

6. Take-home-message:

The IFS model scales well at very high resolution and allows global simulations with an average grid-spacing of 1.45 km. Spectral models continue to be competitive in efficiency and model quality compared against grid-point models towards global storm-resolving simulations.

Simulations at an average grid-spacing of 1.45 km show a clear improvement of realism for tropical convection and rainfall pattern when compared to simulations with parametrised deep convection.

Differences between simulations with hydrostatic and non-hydrostatic equations or with different timesteps are visible but we do not see sufficient improvements to justify the significant computational cost of non-hydrostatic simulations with short timesteps yet.

