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Potential Flow of 2D Ideal Fluid
Potential flow

4φ(x , y , t) = 0

Boundary conditions: ∂φ

∂t
+

1

2
|∇φ|2 + gη = 0,

∂η

∂t
+ ηxφx = φy

∣∣∣∣∣∣∣ at y = η(x , t).

y

(x,t)

x

∂φ

∂y
= 0, y → −∞

Hamiltonian H is the total energy of fluid H = T + U.

T =
1

2

∫ ∞
−∞

dx

∫ η

−∞
(∇φ)2dy

U =
g

2

∫
η2dx

∂η

∂t
=

δH

δψ
,

∂ψ

∂t
= −δH

δη
, ψ(x , t) = φ(x , y , t)|y=η

The Hamiltonian expansion in a power series of variables η and ψ up to 4-th
order:

H(η, ψ) =
1

2

∫
{gη2+ψk̂ψ}dx−1

2

∫
{(k̂ψ)2−(ψx)2}ηdx+

1

2

∫
{ψxxη

2k̂ψ+ψk̂(ηk̂(ηk̂ψ))}dx
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The super compact Zakharov equation (SCZE) and its
breather solution

We apply canonical transformation η, ψ ←→ c to remove cubic nonlinear terms
and to drastically simplify fourth-order terms in the Hamiltonian.
The equation of motion takes the following form:

∂c

∂t
+ i ω̂c − i P̂+ ∂

∂x

(
|c|2 ∂c

∂x

)
= P̂+ ∂

∂x
(k̂|c|2c)

This equation is called the super compact Zakharov equation (SCZE) and it
has a breather solution (can be found numerically by the Petviashvili method):

c(x , t) = cbr (x − V0t; δ) e ik0x−iωk0
t−iδt ,
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A steep breather. Blue dash-dotted curve
shows Re[c(x)]; black solid curve indicate
the modulus of breather profile |c(x)|

The collision of two breathers. Black curve
shows |c(x)| at initial moment of time, red
curve shows |c(x)| after breather collision.

A.I. Dyachenko, D.I. Kachulin, V.E. Zakharov, On the nonintegrability of the free surface
hydrodynamics, JETP Lett., 2013

3 / 18



Nonlinear Schrödinger equation and solitons collision

•The nonlinear Schrödinger equation (NLSE):
∂C

∂t
+
iωk0

8k2
0

∂2C

∂x2
+ik2

0

[
|C |2C

]
= 0.

A soliton solution for the NLSE:

Cs(x , t) =
δ

k0

exp
[
−i 2k0U

V0
x + i U

2k0
V0

t − i δ
2

2
t
]

cosh

[
2δk0√
ωk0

(x − Ut)

] .

• The NLSE is an integrable equation and it has essential peculiarities related
to the solitons interaction. Collisions of the NLSE solitons are completely
“elastic”, that is, there are no energy exchanges between them and their basic
parameters, amplitudes and velocities, do not change.
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The comparison of soliton collisions in the DZe and the
NLSE

D. Kachulin and A. Gelash, On the phase dependence of the soliton collisions in the
Dyachenko–Zakharov envelope equation Nonlinear Processes in Geophysics, 25(3),
553-563(2018).

I Numerical simulations were performed in the
periodic domain x ∈ [0, 100λ0] in the reference
frame moving with the group velocity

V0 = 1
2

√
gλ0
2π

;

I At the initial time t = 0 the distance between the
solitons was 50λ0.

I Solitons have close unidirectional velocities
V1 = V0+U0 and V2 = V0–U0.
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I The experiments were carried out with different initial phases of the ” left
” soliton to study the influence of solitons relative phase on the dynamics
of their interaction.

I At the time t = 25λ0
U0

the solitons collided; The calculations were carried
out up to the time t = 50λ0

U0
when the distance between the solitons

became ≈ 50λ0 again.
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Total energy losses and energy interchange
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The total energy losses ∆Eloss (in percent)
of DZe solitons after their collision
depending on the relative phase ∆φ. The
wave steepness of the solitons µ ≈ 0.2.

The individual energy change (in percent)
of the DZe solitons after their collision
depending on the relative phase ∆φ. The
dashed curve 1 shows dependence of
energy change for the first soliton, while
the dash–dotted curve 2 corresponds to
the dependence of energy change for the
second soliton.
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Long-time dynamics of pairwise breathers interactions
One of the breathers having a higher velocity also has a larger number of particles:

N =

∫
n(x)dx =

∫
k̂−1c(x)c∗(x)dx
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The initial (black dashed curve) and the final (red solid curve) number of particles
densities n(x) for two different numerical experiments.

The experiments showed that in all 32 cases with different initial phases the
only one soliton remains at the end, but two main interaction scenarios were
discovered. 7 / 18



The first scenario of breather pairwise interaction
We label the soliton that initially had a larger N by index 1, while the second one by

index 2.
Here number of particles:

N =

∫
c(x)c∗(x)

k̂
dx

momentum:

P =

∫
c(x)c∗(x)dx

In the first scenario N1 increases,
while N2 decreases after each
pairwise interaction until the
absorbtion of soliton 2 shown by a
vertical black line. After that, N1

reaches a constant and N2

vanishes. A similar behaviour for
the momentum of P1 and P2. The
value of Pi

Ni
has a dimension of

characteristic wave number.

 0

 0.2

 0.4

 0.6

 0.8

 1

      

a)

N
1
/N

, 
N

2
/N

1
2

 0

 0.2

 0.4

 0.6

 0.8

 1

      

b)

P
1
/P

, 
P

2
/P

1
2

 95

 110

 125

0 100 200 300 400 500

c)

P
1
/N

1
, 
P

2
/N

2

time, 10
3
 T0

1
2

Time dependence for number of particles (a), momentum (b) and wave number (c) in
the first scenario.
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Estimates for the number of particles, momentum and
energy of the SCZE soliton

Following [A. I. Dyachenko, et al., Zh. Eksp. Teor. Fiz, 96, 2026 (1989)] one can
obtain relations for changing the number of particles of each breather after their
collision using the conservation laws for the number of particles, momentum and
energy.
The expressions for three integrals of motion – the number of particles, the total
momentum and the total energy – have the following form:

N =
1

k0

∫
|C |2dx , P =

∫
|C |2dx +

i

2k0

∫ [
C
∂C∗

∂x
− C∗

∂C

∂x

]
dx

E =
ωk0

k0

∫
|C |2dx + i

ωk0

4k2
0

∫ [
C
∂C∗

∂x
− C∗

∂C

∂x

]
dx −

ωk0

8k3
0

∫ ∣∣∣∂C
∂x

∣∣∣2dx +
k0

2

∫
|C |4dx

For a single soliton full momentum P and total energy E can be determined by

number of particles N =

√
ωk0

k4
0
δ and soliton velocity U:

P = k0N −
4Uk2

0

ωk0

N, E = ωk0
N − 2Uk0N −

2U2k2
0

ωk0

N +
k8

0

6ωk0

N3.
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Expressions for the number of particles changes
The balance expressions for the interaction process of two solitons (N1, U1) and
(N2, U2) with radiation losses δN take the form:

N1 + N2 = Ñ1 + Ñ2 + δN,

U1N1 + U2N2 = Ũ1Ñ1 + Ũ2Ñ2 −
V0kw
2k0

δN,

U2
1N1 −

k6
0

12
N3

1 + U2
2N2 −

k6
0

12
N3

2 = Ũ1
2
Ñ1 −

k6
0

12
Ñ1

3
+ Ũ2

2
Ñ2 −

k6
0

12
Ñ2

3
+

V 2
0 k

2
w

4k2
0

δN

One can obtain the following expressions for the number of particles changes
∆N1 = Ñ1 − N1 and ∆N2 = Ñ2 − N1 of soliton 1 and 2 correspondingly:

∆N1 =

(
k6

0
4
N2

2 +
(
U2 + V0kw

2k0

)2
)
δN + 2N1∆U1(U1 − U2)

k6
0
4

(N2
1 − N2

2 )− (U1 − U2)2
,

∆N2 = −

(
k6

0
4
N2

1 +
(
U1 + V0kw

2k0

)2
)
δN − 2N2∆U2(U1 − U2)

k6
0
4

(N2
1 − N2

2 ) + (U1 − U2)2
.

Here ∆U1 = Ũ1 − U1 and ∆U2 = Ũ2 − U1 are the velocities changes of soliton
1 and 2 correspondingly.
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The second scenario of breather pairwise interaction
Another scenario is less common
and is as follows. When the
breathers velocities are very close
to each other they bind for a while
into one periodically oscillating
structure resembling the NLSE
bi-soliton solution. This scenario
can no longer be described by
abovementioned expressions for
∆Ni due to the complex and
intense interaction of breathers.
Interacting in this way for some
time they significantly exchange
their number of particles and the
result remains the same – one of
them is completely absorbed.
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for the second scenario.
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Bound soliton and exact bi-soliton solution of the NLSE

The exact bound bi-soliton solution of the NLSE is well-known:

Cbs(x , t) =
2C1−C2

C1+C2

[
C1 cosh [C2η2] e−

1
2
ik2

0C
2
1 t − C2 cosh [C1η1] e−

1
2
ik2

0C
2
2 t
]

(
C1−C2
C1+C2

)2

cosh [C1η1 +C2η2]+cosh [C1η1−C2η2]− 4C1C2
(C1+C2)2 cos

[
(C 2

1−C 2
2 )

k2
0
2
t
]

Here, η1 =
2k2

0√
ωk0

(x − x1) and η2 =
2k2

0√
ωk0

(x − x2).

This solution is periodic in time with period T = 4π
k2

0 (C2
1−C2

2 )
.
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The examples of bound soliton solutions
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The BS solution of the NLSE for
C1 = 1.75, C2 = 0.75 and x1 − x2 = 50.
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Long-time interaction of three breathers
An increasing number of solitons in the domain will not lead to any drastic
changes. They still interact according to two previously discovered scenarios,
and still, the only one remains.
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The evolution of three interacting breathers. The ordinate shows the particles number
density n(x). The top panel (a) presents the initial state (t = 0). Panels (b) and (c)
corresponds to the states with t = 5.48 · 105s and t = 1.5 · 106s. The lower panel (d)
presents the state where the only one soliton remained.
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Long-time interaction of five breathers
To increase the number of solitons causes difficulties in calculations. Since one
soliton is always taking the particle number from all the others, this will
inevitably lead to the wave breaking and the calculation end.
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The evolution of five interacting breathers. The ordinate shows the particles number
density n(x). The top panel (a) presents the initial state (t = 0). The lower panel (d)
presents the state of pre-breaking wave.
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Bound soliton (bi-breather) solution of the supercompact
Zakharov equation
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Bound soliton (bi-breather) solution of the exact nonlinear
equation
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Conclusion

I Long-time dynamics of soliton gas in the SCZE for unidirectional deep
water waves was studied. It was shown that after multiple collisions of
breathers only one soliton remains regardless of the initial phase. Thus,
solitons relative phases do not affect the end result, but play a role in the
collision dynamics.

I Despite one outcome, two different scenarios of soliton interaction
dynamics were observed. In the first scenario the “strong” soliton initially
having a larger number of particles increases after each interaction, while
the “weak” soliton decreases. In the second scenario, when the breathers
velocities become very close due to collisions, the formation of a bound
soliton or “soliton molecule” was observed. The bound structure is similar
to the well-known exact bound bi-soliton solution of the NLSE. After a
certain number of time periods this bound pair of solitons turns into one
large soliton.

I A new solution of the SCZE and the exact equations was found and it is
similar to bi-soliton solution of the NLSE.
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