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The effect of elasticity of the 
surrounding rocks. Self-oscillations
• Simple conceptual model

• Self-oscillations
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Stick-slip-type of sliding

• Friction is assumed to be rate-independent
• The force driving the block is passed through a 

system with finite stiffness
• It is the combination of the mass of the block

and a spring stiffness that determine the
frequency of the oscillations in sliding velocity

• The displacement curve resembles stick-slip
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Intra-sonic propagation of sliding 
zone in a fault

• A simple 1D model
– Friction is assumed to be constant
– Symmetry plane coinciding with the middle plane of

the fault
– The rock near the fault is modelled as an elastic rod of 

thickness h
– The shear provided by the rock mass moving with a 

constant velocity is modelled through a distribution of 
springs of equal stiffness k

• The model leads to telegraph equation with 
respect to the relative velocity of the sliding zone

4/5/20 Dyskin, Pasternak, UWA 5



Model of sliding zone propagation
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V0 – velocity of rock mass relative to the symmetry plane
k – the spring stiffness, Pa/m 
E, r – Young’s modulus and density of the rock at the fault
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Intra-sonic propagation of sliding 
zone in a fault

• When friction is independent of velocity (rate 
independent) the sliding zone propagates with 
the p-wave velocity

• When friction reduces with velocity the sliding 
zone propagation is intra-sonic
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Rotation of non-spherical particle in 
compression. Negative stiffness

3/5/20 Dyskin, Pasternak, UWA 8

xj

T, u

P

O

A

d

y
Detached 
grain

0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

u/d

T
P

  
dT = kdx; k = − P

d sin3ϕ

At onset of rotation:
•Apparent negative 
stiffness
•Reversible
•Proportional to 
compressive force

Negative stiffness



Rotation of non-spherical particles 
in gouge
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Schematics: Tarasov’s “fan” (Tarasov & Randolph, 2008)



Sliding over a frictionless fault with 
negative stiffness gouge
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u – displacement of the rock at the fault relative to the symmetry plane
(-k) – the negative spring stiffness, Pa/m 
E, r – Young’s modulus and density of the rock at the fault
A – cross-section of the part of the rock at the fault 
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Telegraph equation as a universal 
model of sliding zone propagation

• Friction: Variable – relative velocity, Δ"; sign −$%

• Negative stiffness: relative displacement, u; sign +$%
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Solution of the telegraph equations 
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Analysis
• Term !" # ξ − & + # ξ + & together with ξ =

⁄*+ ,- , & = /+ suggests sliding with velocity cl. 
• Kernels:

• This suggests that in the case of negative stiffness 
the amplitude of sliding zone increases, which 
corresponds to energy supply associated with 
negative stiffness. 

• This energy comes from the work of the 
compression effecting negative stiffness in the 
case of rotating non-spherical particles
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Conclusions
• Frictional sliding is produced by the force applied through the 

surrounding rock which is not absolutely stiff.

• Elasticity of the rock leads to self-oscillations in velocity. The 
way displacement increases resembles stick-slip even if the 
friction force is rate independent

• The force causing sliding over a fault is transmitted through
longitudinal deformation of the rock near the fault. This makes 
the sliding zone propagate with the p-wave velocity.

• Rotations of (usually) non-spherical gauge particles in the 
presence of compression lead to the effect of negative stiffness. 

• Sliding over a fault with negative stiffness material in the fault 
produces the sliding velocity also equal to p-wave velocity 
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