Statistical postprocessing of heavy precipitation

Session HS7．10， 05 May 2020
Spatial extremes in the hydro－and atmosphere：understanding and modelling EGU2020：Sharing Geoscience Online at a glance

Reinhold Hess（1），Peter Schaumann（2），Volker Schmidt（2）
（1）Deutscher Wetterdienst，Forecast Application Development
（2）Ulm University，Institute of Stochastics

extreme precipitation events are rare

\Rightarrow example: RR/1h $>15 \mathrm{~mm}$
\rightarrow all observed events from 08.12.2010 until 31.12.2017 (> 7 years) in Frankfurt (similar in Berlin, etc.)
\rightarrow COSMO-DE-EPS starting at 12 UTC, value of the next grid point

date	hours after 12 UTC	EPS-mean	EPS-Stddev	observation
22.06.2011, 13 UTC	+01	1,4	0,4	15,2
$\mathbf{0 6 . 0 8 . 2 0 1 2 , ~} 00$ UTC	+12	0,6	0,6	15,0
$16.08 .2012,02$ UTC	+14	1,2	1,3	37,3
$\mathbf{0 8 . 0 6 . 2 0 1 3 , 1 8 ~ U T C ~}$	+06	0,0	0,0	34,8
$29.11 .2015,22$ UTC	+10	2.0	1,8	15,6
$29.05 .2016,23$ UTC	+11	1,8	2,1	15,2
$30.05 .2016,00$ UTC	+12	1,2	2,2	17,3
$14.06 .2016,16$ UTC	+04	8,8	9,8	19,1

\rightarrow verification of precipitation amount RR/1h
\rightarrow forecast period May-June 2016
\rightarrow forecast period: 1 h for MOS (3h for COSMO-DE-EPS)

COSMO-DE-EPS mean

Ensemble-MOS
\rightarrow small correllation between forecast (next grid point) and observation
\rightarrow small improvement by statistical optimisation with EnsembleMOS
\rightarrow climate mean might be the best statistical forecast

optimisation of precipitation

\rightarrow verification of precipitation amounts $R R / 1 \mathrm{~h}$ (nearest point, linear regression)
\rightarrow forecast period May-June 2016
\rightarrow forecasting time: 1h for MOS (3h for COSMO-DE-EPS)

COSMO-DE-EPS Mean

Ensemble-MOS
\rightarrow overestimation of precipitation amounts for COSMO-DE-EPS (above about 1.5 mm)
\rightarrow significant improvement by statistical optimisation with Ensemble-MOS

- U『○
\rightarrow point probability: precipitation occurs exactly at given location (grid centre)
\Rightarrow area probability: precipitation occurs anywhere in an area (grid cell)

point probabilities on 20 km grid

area probabilities for 20 km grid

area precipitation probabilities

point probabilities on 20 km grid

area probabilities for 0.625 km grid
(c) (i)
\triangle UT®

point probabilities on 20 km grid

area probabilities for 1.25 km grid
(c) (9)
unu nuresity uniestial $/ \mathrm{m}$
$\triangle \cup \square O$

area precipitation probabilities

point probabilities on 20 km grid

area probabilities for 2.5 km grid
(c) (9)

ロU『O

area precipitation probabilities

point probabilities on 20 km grid

area probabilities for 5 km grid
(c) (i)
umumesty unalm
$\triangle \cup T O$
c.
$W \triangle R N$

area precipitation probabilities

point probabilities on 20 km grid

area probabilities for 10 km grid

area precipitation probabilities

point probabilities on 20 km grid

area probabilities for 20 km grid

point probabilities on 20 km grid

area probabilities for 40 km grid

area precipitation probabilities

point probabilities on 20 km grid

area probabilities for 80 km grid

ロU『O
\rightarrow derive area probabilities from calibrated point probabilities
\rightarrow basic idea of approach:
\rightarrow model precipitation as circular precipitation cells
\rightarrow cells are randomly distributed by stochastic process
\rightarrow match the relative number of coverages to point probabilites
\rightarrow for an arbitrary area: count coverages (also partial coverages)
\rightarrow radii of precipitation cells are estimated from variability of point probabilities (semivariogram)
\rightarrow adjust for convective events or large scale precipitation

3 of about 1000 Monte Carlo-simulations
(c) (i)

- U『®
\rightarrow enhancement for high precipitation thresholds ($5 \mathrm{~mm} / \mathrm{h}, 10 \mathrm{~mm} / \mathrm{h} . .$.)
\rightarrow model area precipitation amounts
\rightarrow assigne a symmetric response function to each cell
\rightarrow multiply response function with random scaling variable
\rightarrow sum up scaled response functions
\rightarrow fit scaled response functions to point probabilities
\rightarrow sum up for arbitrary areas
\rightarrow derive probabilities for high thresholds

typical realisation

estimated amounts based on 5000 realisations
$\triangle \cup T O$
\rightarrow gauge adjusted radar products as predictands
\rightarrow for point probabilities instead of synoptical observations
\rightarrow for area probabilities of predefined areas

1-hourly estimation of precipitation (gauge adjusted at stations)
\rightarrow radar probabilities of precipitation
\rightarrow radar precipitation in $1 \times 1 \mathrm{~km}$ resolution (RW-product of DWD)
\rightarrow surrounding of synoptical stations ($\mathrm{r}=8 \mathrm{~km}$ and 40 km)
\rightarrow relative frequencies in surrounding is used as predictand of point probability
\rightarrow improved statistical sample higher representativity more extreme cases
\rightarrow area related predictands

Thank you for attention

\rightarrow question:

what is the best compromise between spatial resolution and predictability?

ロU『○

