

The University of Manchester

Endogenous and Exogenous Uncertainty in Adaptive Water Resource Planning

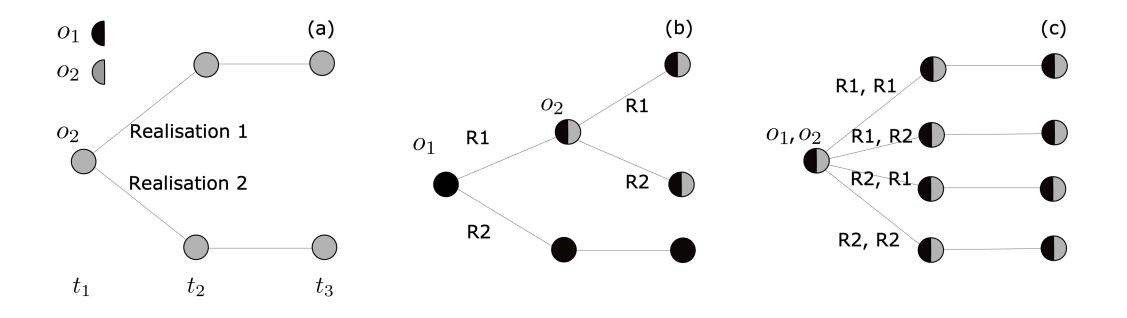
Tohid Erfani, Kevis Pachos, Julien J. Harou

EGU 2020 - Wed, 6 May

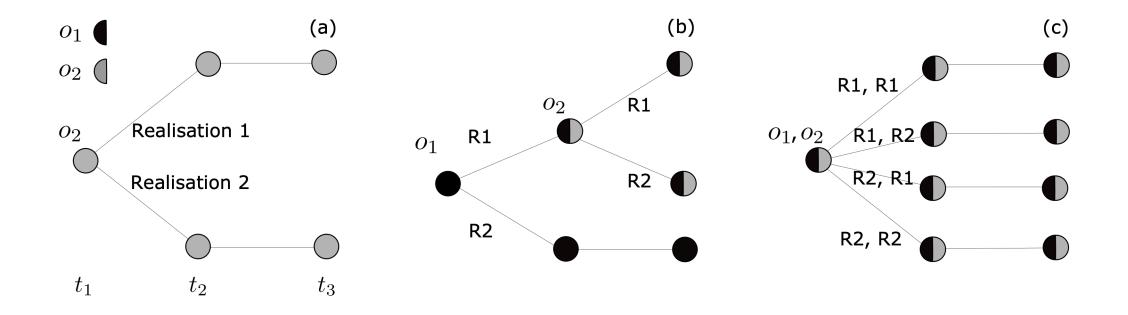
Link: https://doi.org/10.1016/j.advwatres.2019.103490

Endogenous and Exogenous Uncertainty

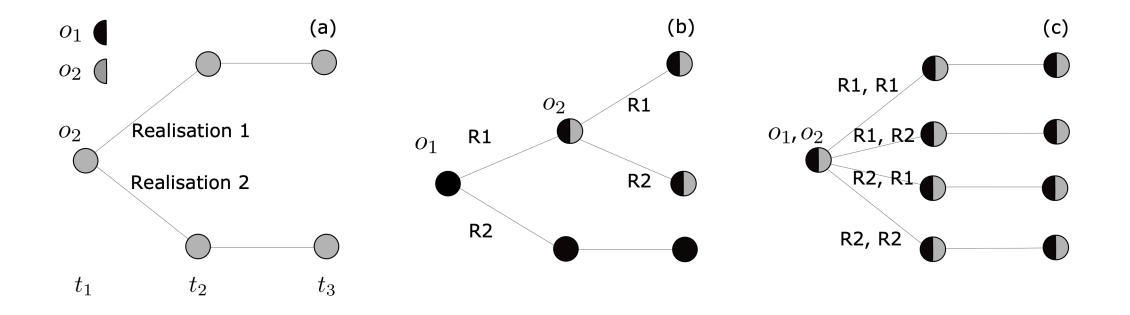
Staged water infrastructure capacity expansion optimization models help create flexible plans under uncertainty:

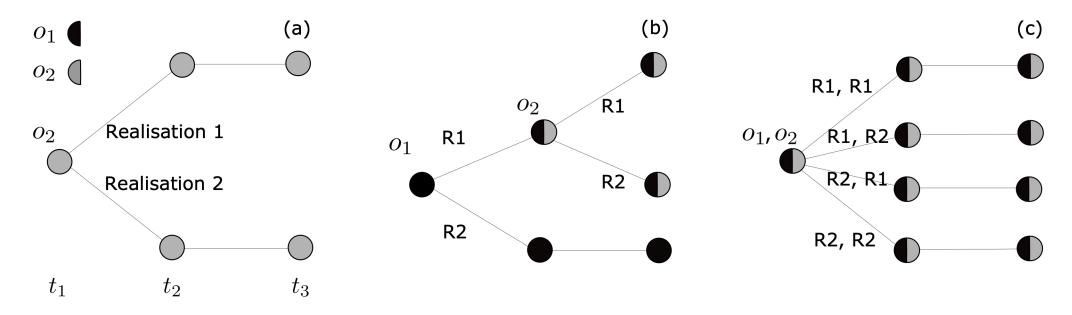

- Exogenous uncertainty can be incorporated into the optimization using an a priori hydrological and demand scenario ensemble

- Endogenous or 'decision-dependent', i.e., the optimized timing and selection of interventions determines when and which uncertainties must be considered


Endogenous Uncertainty & Real Options

- We formulate a multistage real-options water supply capacity expansion optimization model incorporating endogenous uncertainty and describe its effect on cost and option selection.
- We show how endogenous uncertainty propagates when making planning decisions over time on a synthetic case study.
- The results are contrasted with the deterministic formulation in terms of option activations and the expected present value of the cost.


The figure shows the uncertainty realization for two water development options (O_1 and O_2) as endogenous uncertain parameters.


In (a) O_2 is activated in t_1 with uncertainty over two possible realizations while O_1 is never activated accounting for two scenarios.

In (b) O_1 is activated in t_1 and O_2 is activated in t_2 both with two possible realizations showing three scenarios.

In (c) both options are activated in t_1 and hence produces four scenarios. These activations are during the course of optimization and are not known a priori.

Problem formulation

w is a scenario with probability of occurrence of p_w

t denotes time (stages)

i is a water resources development decision

r is the discount rate

Constraint 5 and 6 introduce the endogenous uncertainty

$$\min \ e = \sum_{w \in \Omega, t \in T, i \in I} \frac{p_w}{(1+r)^t} [cC_i \times (dS_{t,i}^w - dS_{t-1,i}^w) + fC_i \times dS_{t,i}^w + vC_i \times S_{t,i}^w],$$

(1)

(6)

$$s.t.$$

$$\sum_{i \in I} S_{t,i}^{w} + eS_{t}^{w} \ge D_{t}, \quad \forall w \in \Omega, t \in T, \qquad (2)$$

$$S_{t,i}^{w} \le dS_{t,i}^{w} \times cS_{i}^{w}, \quad \forall w \in \Omega, t \in T, i \in I, \qquad (3)$$

$$dS_{t+1,i}^{w} \le dS_{t,i}^{w}, \quad \forall w \in \Omega, t \in T, i \in I, \qquad (4)$$

$$dS_{1,i}^{w} = dS_{1,i}^{v}, \quad \forall w, v \in \Omega, i \in I, v \neq w \qquad (5)$$

$$dS_{t+1,i}^{w} = dS_{t+1,i}^{v} \Leftrightarrow \bigwedge_{i \in D(w,v)} \bigwedge_{l < t} (1 - dS_{l,i}^{w}), \quad \forall w, v \in \Omega, i \in I, v \neq w$$

Application Water Resource Planning Problem

Table 1 shows demand growth and existing supply projection (assumed to be known)

Table 1: Existing water availability and demand growth projection

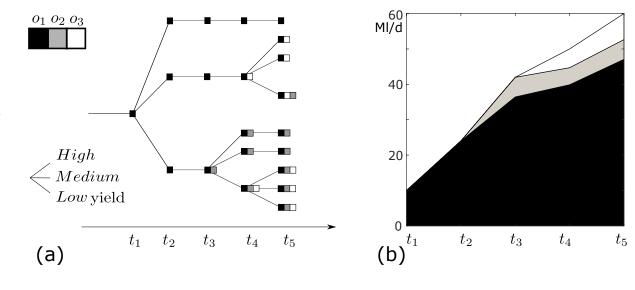
	t_1	t_2	t_3	t_4	t_5
Demand (Ml/d)	2010	2024	2042	2050	2060
Water availability (Ml/d)	2000	2000	2000	2000	2000

Table 2 shows the uncertainties implied by the water supplydemand intervention options that follow a triangular distribution

Water availability by expanding capacity (Ml/d)					
Intervention	high	medium	low	Mean	
01	60	42	40	47	
O_2	25	20	5	17	
03	20	18	15	18	

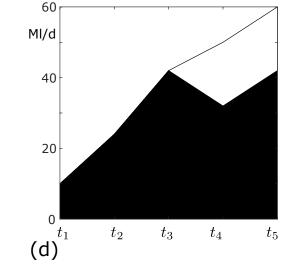
Table 2: Decision dependent uncertainty implied by the investment options

Results: Optimal activation of options


 t_1

(c)

 t_2


 t_3

- (a) Solution structure for capacity expansion by considering endogenous uncertainty
- (b) Utilization of options by considering endogenous uncertainty
- (c) Capacity expansion deterministic solution
- (d) Utilization of options activated in deterministic solution

 t_5

 t_4

Conclusions

- Proposed an extension to an adaptive multistage real options water infrastructure planning optimization problem formulation for when some uncertainties are endogenous.
- Solved problems where water resource system intervention decisions control when additional uncertainties associated with new options must be introduced.
- The formulation with endogenous uncertainty saves 10% compared to deterministic formulation.