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Introduction

» East Asia (i.e. Korea, China, and Japan) has suffered from severe air pollution every year concerning

particulate matter less than 2.5um in diameter (PM, ;).
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» Annual PM average from 2015 to 2018 was decreasing rate (Fig. a).

» However, more frequent PM, . events with greater intensity and longer duration contribute at least partially to

higher mean PM concentrations for the spring seasons (January to March) (Fig. b).

The number of events



Introduction

» Ambient PM, . has longer residence time (i.e. days to weeks) because it neither settles nor coagulates

quickly. Therefore, PM, < is capable to transport to distant region.

» Therefore, analysis limited to narrow region may miss the flow of PM, . associated with synoptic
weather conditions. This means a wide range of comprehension not only regional growth of PM,

concentrations but also the inflow of PM, ¢ from the surrounding areas is needed.

» We attempted to find statistically how the magnitude and duration of high PM, . pollution over Korea
distributed with a focus on spatiotemporal variations and categorized the characteristic patterns of

events based on COD results.

» We also represented time-lag distributions with synoptic weather conditions, and we suggested the
relationship between high PM, : pollution events and weather condition considering time-lag corrected

COD and R2 results.



Method

1. Data

» Hourly PM, = concentration data

» 381 air quality monitoring stations (AQMS) in Korea
» January 1, 2015-September 30, 2019

Figure 1. AQMS sites

2. High PM, ¢ pollution events

» We defined high PM, ¢ pollution period in a basis of watch alert
standard in Korea for which hourly PM, : concentration exceeds
75 pg/m’ for at least two hours

3. Spatiotemporal variability

» Two statistical methods (Time-lag correlation and Coefficient of
divergence) were used to see spatiotemporal heterogeneity

- Time-lag correlation
» calculates the different response time between a pair of sites
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a, b : simultaneously measured species

t : time

T . a time-lag applied to time seriesin b

o . standard deviation for the pollutants a and b

T : the number of data points (Choi et al., 2012)

- Coefficient of divergence (COD)
» determines the divergence degree between a pair of sites

n 2
cop = |- Y (L)
n o Xif t Xin
xif, Xin - the concentrations of one species for the ith time period at sites f
and h, respectively.
n : the number of observations
COD Value =0 :totally homogeneous

COD Value > 0.2 : heterogeneously distributed (Wilson et al., 2005)



Result

1. Spatiotemporal distribution of PM, : for the high pollution events
» We examined the spatial distributions of PM, ¢ for pollution periods using COD and the coefficient of determination

(R?) values calculated with a pair of time-series of PM, - between the reference site (averaged for 25 AQMS in Seoul)

and other monitoring sites
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Fig. Categorized COD and R squared distributions

» The case |, case Il, and case Il
represent 11 events (29.7%), 11 events
(29.7%), and 9 events (24.3%) of 37

events in total, respectively.

» COD and R?values in three high PM, ¢
cases showed characteristic

distribution patterns.

» Both COD and R? showed distinct
boundaries (showed by dotted line) of

heterogeneity and similarity.



Result

2. Time-lag distribution of PM, c for the high pollution events and corresponding air mass back-trajectory
Event 3 in Case 3

Event 1 in Case 1

Event 2 in Case 2

» This figure shows three representative time-lag
distribution and synoptic weather condition for
high PM, . events of each categorized case.

| » Backward trajectory was analyzed using the
NOAA HYSPLIT model to evaluate pollutant
transportation pathway, and ground level weather
maps which represent the pressure distribution

from KMA were also analyzed.

» Expansion of Siberian high caused westerly
inflow of air mass in Event 1, pollutants with
stagnant high-pressure was slowly moved to

eastward in Event 2, and anticyclone stayed over
Manchuria made downward inflow in Event 3.
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» The air mass inflow with the air pressure
distribution well expressed time-lag distribution.
This means time-lag distributions were highly
related with the synoptic weather condition in high
PM, - events.




Result

3. Time-lag corrected distributions of PM, : for high PM, ; events

» \We modified the time considering the time-lag of each site and obtained time corrected COD and R squared values
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Fig. Time-lag corrected COD and R squared distributions

» Time corrected COD showed wider
homogeneous distribution with a
slightly improve in most region but did
not decrease noticeably.

» This can be explained by the absolute
difference in concentration magnitude
of each site.

» However, time corrected R?
represented homogeneous over
Korea. This means high PM2.5 events
was highly related to the movement of
air mass.



Conclusion

» Time-lag correlation and COD results showed characteristic variability patterns.
» COD and R squared values showed characteristic distributions,
» Time-lag distributions in high PM, . events were related with air mass movement.

» Time-lag corrected COD values were slightly improved, and R? represented strong similarity in variability of

PM, . concentration.
» These results imply that high PM, - events are mainly affected by synoptic weather condition.
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