

Positioning and integrity monitoring using the new DFMC SBAS service in the road transport

K. Wang, A. El-Mowafy

Curtin University, Australia

Curtin University is a trademark of Curtin University of Technology CRICOS Provider Code 00301J

Contents

- Second-Generation SBAS Test-bed
 - Infrastructure
 - Services and solution types
- New weighting model
 - Challenges in ground-based applications
 - Influencing factors
- Integrity monitoring for DFMC SBAS
- Test results

Augmentation system to support positioning not only in aviation, but also in transport, precision agriculture, martitime, surveying, etc.

• Test-bed developed by:

Australian Government

Geoscience Australia

• Managed by:

EGU2020, Vienna, 4-8 May 2020

Second-Generation SBAS

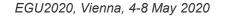
Service and Solution types (non-aviation mode)

Solution types	GNSS signals	SBAS augmentation
L1 SBAS	GPS (L1) + (Galileo E1)	GPS
DFMC SBAS	GPS (L1+L5) + Galileo (E1+E5a)	GPS + Galileo
PPP over L5	GPS (L1+L5) + Galileo (E1+E5a)	GPS + Galileo
PPP over L1	GPS (L1+L5)	GPS

Features:

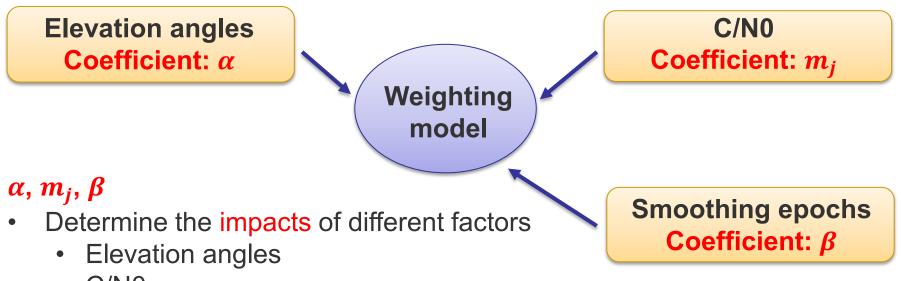
- Precise satellite orbits and clocks in real-time
- Free-of-charge
- Support single-receiver dual-frequency GPS+Galileo positioning

- $l(t_i)$: Carrier-smoothed code observations
- $\hat{x}(t_i)$: Receiver coordinates, receiver clocks (GPS+Galileo)

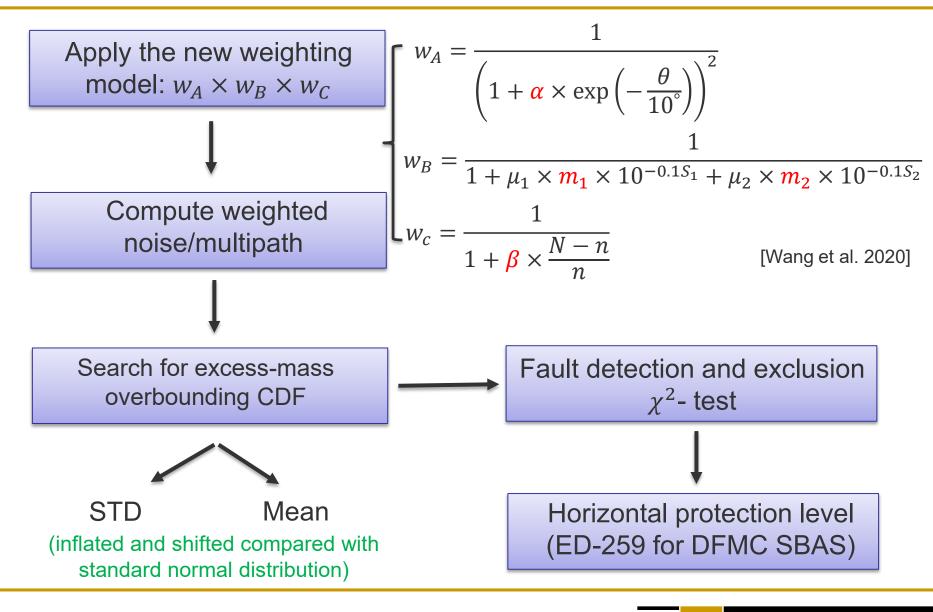

Applications in road transport \rightarrow Complicated multipath environment

Challenge 1: Multipath at high elevation angles

• C/N0 considered for weighting


Challenge 2: Frequent cycle slips and filter initializations

- Using well smoothed observations \rightarrow Significant data loss
- Smoothing epochs considered for weighting


New weighting model

- C/N0
- Smoothing epochs
- Coefficients are empirically searched to best match the empirical and formal CDFs of the normalised and weighted noise/multipath
- Investigated for
 - Open-sky, suburban and urban scenarios
 - Smoothing windows of 300, 600 and 900 s

Integrity monitoring: Overbounding CDF + FDE + HPL

Curtin University

- Computed in the direction along the semi-major axis of the horizontal error ellipse
- Bound the horizontal positioning error (HPE) with a pre-defined PHMI
- When exceeding the horizontal alert limit (HAL), warning message is sent to user

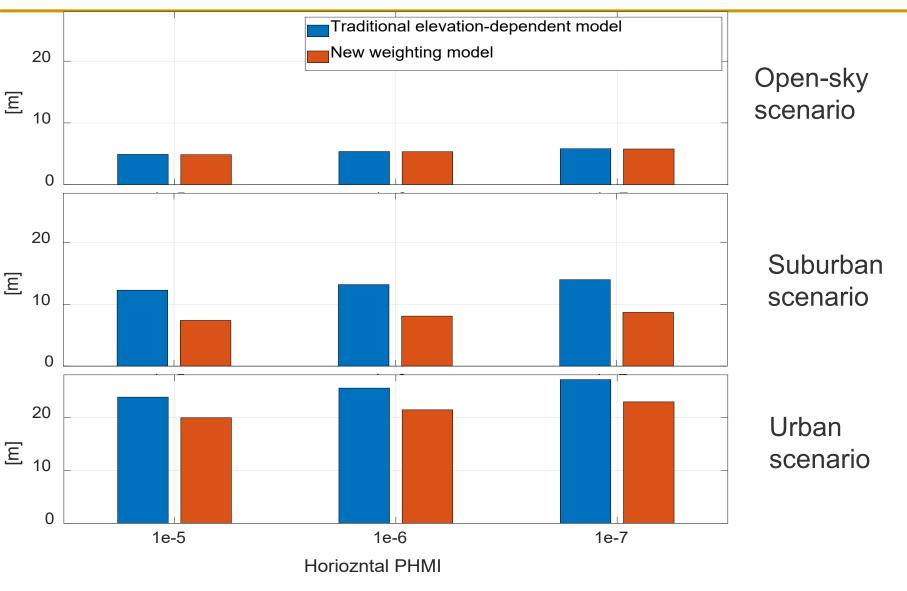
HPL

ΗΔΙ

HPE

 $HPL = K \times \sigma + |T| \times M$ Determined by the PHMI

Overbounding mean of noise/multipath mapped into slant direction


Observation \rightarrow Position domain transformation

Determined by:

- · Precision of the satellite clocks/orbits
- STD of unmodelled tropospheric residuals
- STD of remaining ion. effects after forming the IF combination
- Overbounding STD of noise/multipath mapped into slant direction

Mean HPL

EGU2020, Vienna, 4-8 May 2020

Questions

Reference:

Wang K., El-Mowafy A., Rizos C., Wang J. (2020) SBAS DFMC service for Road Transport: Positioning and integrity monitoring with a new weighting model. Journal of Geodesy, under review.

For questions: <u>kan.wang@curtin.edu.au</u> <u>a.el-mowafy@curtin.edu.au</u>

