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Large hydraulic fracture as a 
bilinear oscillator
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• Parts of unbroken rock connecting the opposite faces 
of the fracture

• Traditionally considered as obstacles for fluid flow
• Traditionally considered as a part of the process zone

• What was overlooked before:

Bridges are all over the crack and can constrict 
the opening

Fractures with constraint opening
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Hydraulic fracture in mining

Northparkes mine, courtesy of Rob Jeffrey
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Bridges in Hydraulic Fracture



Bridge Cracks
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Bridges in Hydraulic Fracture

(Surdi 2010)
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Large hydraulic fracture with 
constrained opening (HFCO) as a 

bilinear oscillator
Conventional fracture 

Fracture with constrained opening - bridges distributed 
all over the fracture. Effective stiffness of bridges is low (He 
et al., 2020), hence kb<<kc.
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He, J., E. Pasternak and A.V. Dyskin, 2020. Bridges outside fracture process zone: Their existence and effect. Engineering Fracture 
Mechanics, 225, 106453 

HF with constrained opening, 
effective when the crack radius, R, 
exceeds a constriction length, l:
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Bilinear oscillator and multiple 
resonances

• Bilinear oscillator as a simplification of strong 
non-linearity

• Resonance frequency
• Multiple resonances
• Half resonance
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Bilinear oscillators
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Dyskin, A.V., E. Pasternak and E. Pelinovsky, 2012. Periodic motions and resonances of impact oscillators. Journal of Sound and 
Vibration 331(12) 2856-2873 
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Bilinear oscillator
f(t)k(u)

Solution, one cycle
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Dyskin, A.V., E. Pasternak and E. Pelinovsky, 2012. Periodic motions and resonances of impact oscillators. Journal of Sound and 
Vibration 331(12) 2856-2873 
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Basic resonance
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2 nd resonance
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Second resonance (excitation at 
double resonance frequency)
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6 th resonance
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resonance frequency)
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Spectrum of bilinear oscillator

• Period

• Fourier series for displacement discontinuity 

• Spectral amplitude
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First two harmonics

• Introduce

• Ratio of the first two harmonics
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Recovery of the stiffness ratio
• Find period T
• Find ratio of two first harmonics
• Find t
• Find stiffness ratio
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Interpretation of the stiffness ratio

• Conventional HF
– If rock modulus !" and contact stiffness #$ are 

known, the fracture radius R is determinable

• HF with constrained opening (large crack 
radius), 

– Effective stiffness #% of bridges is determinable
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Conclusions
• Large hydraulic fractures can behave as bilinear 

oscillators with stiffness in compression being 
considerably higher than stiffness in tension

• Bilinear oscillators exhibit multiple resonances
• Spectrum of bilinear oscillator is controlled by the 

period and stiffness ratio ! = #$
#%
= &$'

&%'

• Finding spectrum of oscillations in response to
external excitation allows the estimation of 
hydraulic fracture dimensions
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