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A BTES facility
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Motivation for an uncertainty quantification

The peak storage efficiency of a facility drops from 26.0% for the planned layout
to 6.2% for a layout with no thermal interaction.
Question: How much do randomly occurring deviations in the layout geometry
affect the performance of a facility statistically?
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Model

Consider a heat storage facility with several borehole heat exchangers (BHEs)
perpendicular to the surface, which is operated in an annual extraction and/or
storage scenario. This can be modeled as a partial differential equation (PDE).

For each BHE, we consider 2 random variables:
I horizontal direction of deviation XDir ∈ [−αmin,αmax ]
I vertical angle of deviation (from the perpendicular course ) XDev ∈ [0,βmax ]
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Interpolation of a quantity of interest

Goal: Calculate an interpolant of a quantity of interest (e.g. the storage efficiency
or a mean outlet temperature for several years of operation), which is a scalar
function over the space of all random variables ( [−αmin,αmax ]× [0,βmax ] )nBHE .

Problem: Each interpolation node requires the solution of the underlying PDE,
which is expensive. ’Curse of dimensionality’ further compounds this problem for
poorly chosen interpolation rules in multiple dimensions.
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Adaptive Anisotropic Stochastic Collocation

Remedy: Adaptive interpolation on nested Smolyak sparse grids [Smo63].

Improvement: Anisotropic refinement via directional error estimators [GG03].
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Practical example - BTES facility layout

The BTES facility is simulated in a heat extraction scenario. The examined quantity
of interest dependent on the input uncertainty is the mean outlet temperature of
the 9 BHEs averaged for 5 years of simulated operation. This quantity is in direct
relation to the facility’s effectiveness when connected to a heat pump.
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Practical example - Uncertainty input

We examine the BTES facility in successive uncertainty quantification scenarios:

We consider uniformly distributed horizontal directions and vertical angles of
deviations. The horizontal directions are kept constant, corresponding to XDir .
The range of possible vertical angles is increased by 1◦ in each successive
scenario, up to a maximum of 8◦. The corresponding probability density functions
for the first 3 scenarios XDev ,1, XDev ,2 and XDev ,3 are pictured above.

4. Mai 2020 | Numerical Analysis and Scientific Computing Group, TU Darmstadt | P. Steinbach | 8



Practical example - results

Using stochastic collocation (SC), we get the mean outlet temperature and its
standard deviation (indicated by the red bars) for each scenario. The mean outlet
temperature varies very little, but the standard deviation increases with each
successive scenario.
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Practical example - results

A Monte Carlo (MC) uncertainty quantification of the same 8 scenarios, with 1000
samples each, provides very similar mean outlet temperatures and standard
deviations, validating the results of the stochastic collocation method.
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Practical example - results

Plotting the standard deviation of the mean outlet temperature against the standard
deviation (STD) of the vertical angles of deviations for each scenario gives a nearly
linear relation. Increasing the input uncertainty leads to a proportional increase in
the output uncertainty.
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Practical example - results

Having access to the interpolant of the mean outlet temperature for each scenario
gives a very high amount of statistical information. For example, we can calculate
the probability density functions (PDF) of the mean outlet temperature itself.
These PDFs answer questions such as ’How likely is the mean outlet temperature
going to be above 1◦C for a given scenario?’.
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Practical example - results
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Practical example - results

Additionally, we can study the contribution of the deviations of an individual BHE by
evaluating the interpolant for its two corresponding random variables while
integrating over the remaining ones. This provides results that are in line with our
intuitive understanding: The mean outlet temperature rises as the BHE is deviated
away from the center of the facility. The plots below belong to the scenario with the
strongest considered vertical deviation of up to 8◦.
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Practical example - results
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Conclusion

I Stochastic collocation provides a computationally efficient method to perform
uncertainty quantifications in the context of BTES facilities.

I The method’s results were validated with Monte Carlo reference uncertainty
quantifications.

I The calculated interpolant gives additional statistical information above and
beyond a simple Monte Carlo uncertainty quantification.

I For the discussed example, the uncertainty quantification gives a
comprehensive study of the effects of deviations in the layout geometry, which
provides a tool to assess its viability.
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Thank you for your attention.
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