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Analytical Model for Tsunami Propagation including Source Kinematics

Abstract

Summary

There are only a few analytical 2+1 D models for tsunami propagation, in which most of them treat

tsunami generation from static deformation field isolated from the kinematics of the rupture. This work

examines the behavior of the tsunami propagation in a simple set-up including a source time function

which accounts for a time description of the rupture process on the tsunami source. An analytical

solution is derived in the wavenumber domain, which is quickly inverted to space with the Fast Fourier

Transform. The solution is obtained in closed form in the 1+1D case. The inclusion of temporal

parameters of the source such as rise time and rupture velocity reveals a specific domain of very slow

earthquakes that enhance tsunami amplitudes and produce non-negligible shifts on the arrival times.

The obtained results confirm that amplification occurs when the rupture velocity matches the long-wave

tsunami speed and the static approximation corresponds to a limit case for (relatively) fast ruptures.
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Linear Potential theory

Problem set-up

h

ζ(x, y, t)

η(x, y, t) (x, y)
z

(u, v)
w
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Mathematical model

Linear Potential theory

Governing Equations

In this study, Tsunamis are governed by the Linear potential theory.
In a constant depth ocean, the system of equations takes the form:

∆ϕ = 0

ϕz = ζt, at z = −h
ϕz = ηt, at z = 0

ϕt = −gη, at z = 0.

where g is the gravity acceleration and (u, v, w) = ∇ϕ(x, y, z, t)
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Mathematical model

Linear Potential theory

Governing Equations

In terms of the Laplace-Fourier Transform, the well-known solution is:

η̂(kx, ky, s) =
s

s2 + ω2

{
sζ̂(kx, ky, s)− ζ̂(kx, ky, 0

−)

cosh(kh)
+ η̂0(kx, ky)

}

where ω2 = (ck)2 tanh(kh)
kh

, k2 = k2x + k2y, c =
√
gh, and η0(x, y) is the

initial condition. In this work, η0(x, y) is set to zero.
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Mathematical model

The underwater disturbance

Definition of the Forcing term

The underwater disturbance evolution defines the forcing term that makes
the tsunami evolve from its source.
If this source term is defined by an earthquake, the kinematics of the
rupture is included:

ζ(x, y, t) = ζ0(x, y)T (y, t)

The final shape of the bottom disturbance is ζ0(x, y) and starts to evolve
when the rupture front reaches the point (x, y). Thus, it varies linearly
from zero to its final value in a fixed rise-time, as shown in the next slide.
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Mathematical model

The underwater disturbance

Definition of the Forcing term
East

−L1

0

L2
N

o
rt

h

Vr

Vr

·
(x, y)

} |y| = Vr × tV (y)

−

W

2
cos(δ)

0 W

2
cos(δ)

−W sin(δ)

0

D
e
p
th δ

0 tV (y) tV (y) + tR

0

0.5

1

T
(y
,
t)

T (y, t) = S
( t− tV (y)

tR

)
S(x) = xH(x)−(x−1)H(x−1)

H(x) is the Heaviside
step function.

The spatial source is
modeled by uncoupling
variables

ζ0(x, y) = ζx0 (x)ζ
y
0 (y)
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Mathematical model

Analytical solution

To derive an analytical solution in the wavenumber domain, the source is
constant along y: ζy0 (y) = H(L2 − y)H(L1 + y)
The next auxiliary functions are defined:

q(a, b, t) =: H(t)
a2−b2

(
sin(bt)
b
− sin(at)

a

)
, with a = ω and b = Vrky.

p(a, b, t, t0) =: L−1{se−st0q(a, b, s)}(t) = ∂tq(a, b, t− t0).

Note there are removable singularities in functions p and q when ω = Vrky.

By using the properties of the Laplace transform:

Mauricio Fuentes Program of Seismic Risk: PRS Natural Hazards NH5.1 D1912 7 / 19



Analytical Model for Tsunami Propagation including Source Kinematics

Mathematical model

Analytical solution

η̂(kx, ky, t) =
ζ̂x0 (kx)

cosh(kh)

V 2
r

tR
[φ(t)− φ(t− tR)]

where

φ(t) =
2

Vr
p(t, 0)− 1

Vr
cos(L2ky)p(t, t2) + ky sin(L2ky)q(t− t2)−

1

Vr
cos(L1ky)p(t, t1)

+ ky sin(L1ky)q(t− t1) + i

{
− 1

Vr
sin(L2ky)p(t, t2)− ky cos(L2ky)q(t− t2)

+
1

Vr
sin(L1ky)p(t, t1) + ky cos(L1ky)q(t− t1)

}
and ti = Li

Vr
, i ∈ {1, 2}.

Finally, η(x, y, t) is numerically retrieved with the FFT.
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Analytical solution

Example: Unilateral rupture

t = 10 min
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Analytical solution

Propagation when ν = 1
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Mathematical model

Analytical solution

1+1 D Non-dispersive case

• ζx0 (x) = H • tR = 0 • ω ≈ ck

In this specific case, a closed form is obtained:

η(y, t) =
ν2H

π(1− ν2)

[
ψ (y − Vrt, 0) + ψ(ct− y, 0) +

(
1

ν
− 1

)
ψ(ct, y)

+H(t′)

{
ψ
(
L+Vrt

′−y, 0
)
−

1

2

(
1

ν
−1

)
ψ
(
y−L+ct′, 0

)
+

1

2

(
1

ν
+1

)
ψ
(
y−L−ct′, 0

)}]

where ν is the ratio between velocities, Vr
c

, t′ = t− L
Vr

, and,

ψ(x, y) = arctan

(
sinh(πx2h )
cosh(πy2h )

)
.
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Mathematical model

Analytical solution

Radial case

• ζ0(x, y) = ζ0(r)

η(r, t) =
M(r, t)−M(r, t− tR)

tR

with

M(r, t) =

∫ ∞
0

J0(kr)k

ω(k) cosh(kh)

∫ max(Vrt,0)

0
J0(kξ)ξζ0(ξ) sin[ω(k)(t− ξ/Vr)]dξdk

M can be efficiently computed with numerical algorithms.
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Results

Asymmetric rupture propagation
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Results

Symmetric rupture propagation
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Results

Unilateral rupture propagation
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1+1 D Maximum amplification

Non-dispersive Dispersive
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Results

Radial source
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Conclusions

Conclusions

• Tsunami amplification is stronger when ν approaches to 1.

• The kinematics on the tsunamigenic source process can strongly
influence the waveforms, especially in the near field, close to the
source area.

• Wave amplitude is optimal for unilateral ruptures since there is a
longer distance where the constructive interference process is taking
place and grows proportionally to the fault length.

• Amplification becomes important for lower values of ν: 2.0 and 2.7 for
the dispersive and non-dispersive cases, respectively. For ν < 0.1,
there is no amplification because in this region tsunami waves are not
excited.
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