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Inversion with structured models

 

Structured models lie in a n-dimesional manifold S embedded in high-dimensional model 
space RN (e.g. N is the number of cells or pixels), where n << N.
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A vector m is any possible model in RN, but only vectors m lying in S exhibit the desired
patterns (structures).

where f(m) is the forward operator
and d is the measured data.

Then inversion problem is:

contours of objective function, defined in RN.



Approximate the manifold
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It is not easy to learn such manifolds for realistically structured models (e.g. geological media)
but good approximations have been done recently with deep generative models (DGMs).

manifold learnt
 by DGM

The setup is for DGMs is:

latent
space, Rn

z1

z2

once trained, samples lying approximately on the 
manifold are generated by sampling first p(z) and 
then p(m|z).

p(z) is a chosen distribution from which it is easy to 
sample from.

For this discussion,           can be assumed zero.

         is the (mean) decoder or generator and for
DGMs is a DNN (usually with convolutional layers).

Therefore,     is the vector of parameters for such DNN
and is estimated by different methods (e.g adversarial
learning for GANs and variational inference for VAEs).



Objective function in the manifold

 

Contours of convex objective 
function, defined in RN.

Contours of objective function
intersected by manifold S, 
notice the two local minima.

Constraining the inversion to the manifold may cause local minima even if the objective 
function in RN is convex, e.g. ||f(m) - d||2 with a linear f.

 

S

m1

m2

m3

RN

minimum

 
m1

m2

m3

local
minima

global
minimum

S

m1

m2

m3

RN

manifold learnt
 by DGM

global
minimum

The situation improves when choosing
an adequate approximate manifold,
but one should be aware of error.

There is a tradeoff between the number of local minima and the accuracy of the patterns (i.e.
staying close to the real manifold).
The issue: standard gradient descent methods usually converge to local minima.



Gradient descent on the manifold
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Latent space may be seen as an Euclidian space Rn to where the manifold is embedded.

In order to stay on the learnt manifold, gradient descent can be performed in the latent space (see
Laloy et al. 2019, Computers and Geosciences).
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The objective function is:

Then a gradient descent step is performed as:

where k is the iteration number and     is the step size (or learning rate).



Stochastic gradient descent on the manifold

 

Even when we choose a manifold that does not produce too much local minima, it will usually not
result in a single global minimum.

Stochastic gradient descent (SGD) is less likely to get trapped in local minima.

We propose to use a decreasing learning rate such that SGD will perform good when a global
"basin of attraction" is present.

In order to stabilize this SGD in the initial phase (when steps are large), we propose a decreasing
regularization to the regions of higher density of samples in the latent space (i.e. as enforced by p(z)).
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Stochastic gradient descent on a realistic manifold

A realistic case was considered with channelized patterns and a linear forward model (linear 
traveltime tomography) for which the objective function is convex in RN but not in the manifold
(in this case N=8325 and n=20).

1) VAE as DGM
2) SGD with decreasing learning rate and regularization on the latent space.

With regular GD, the optimization sometimes
gets trapped in local minima.

With the proposed SGD, the optimization
converges to the global minimum with high
probability.

As previously suggested, to handle the problem with local minima we propose to use: 



Stochastic gradient descent on a realistic manifold (nonlinear forward)

Even with a nonlinear forward model (shortest path method), where the nonlinearity usually
introduces further local minima, the proposed method performs good. 
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Given the higher computational demand of the nonlinear forward model, we reduced the
number of iterations and adjust the decreasing factors for the learning rate and the
regularization accordingly (this may increase the probability of converging to local minima).



Conclusions

Inversion with structured models may be pursued by using gradient-descent in the latent space 
of a deep generative model (DGM). However, local minima may arise when optimization is 
constrained to the manifold learnt by the DGM.

To deal with such local minima, we propose to consider a variational autoencoder (VAE) latent 
space and stochastic gradient descent (SGD) with a decreasing learning rate and regularization
in the latent space.

A realistic case with channelized patterns shows that the proposed method converges to the
global minimum with high probability for both linear and nonlinear forward models.

The same case shows that errors incurred by the imperfect pattern reproduction of the VAE 
decoder are minor with respect to the overall reconstruction of the real model by inversion.
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