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Cloud contamination in optical remote sensing.
❏ Clouds and vegetation biophysical parameters retrieval don’t get along very well (gaps+noise).
❏ High spatial resolution sensors (low revisit cycle) present lots of missing data.

Figure 1. Percentage of high confidence cloud detections over 53 
weeks of Landsat 8 observations derived at each 30 m conterminous 
US [1]

Figure 2. Example of a MODIS FPAR (MOD15) time 
series over a cloudy  area [2]



Gap filling and noise removal in optical remote 
sensing data

� Gap filling methods usually rely on temporal, spatial interpolation or both:
❑ Replacement of missing data with climatologies.
❑ Maximum Value Composites
❑ Linear/polynomial interpolation (lowess, SG,...)
❑ Model fits such as polynomial, Double Logistic (DLOG),... 

 
� Multi-sensor data fusion approaches such as STARFM like approaches  

combine different sensors, but they don’t scale well....

� We created HISTARFM to produce gap free reflectance data at 
continental scales with high spatial resolution sensors in mind.
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Why have we implemented our data fusion method in GEE?

• Google Earth Engine advantages:

❑ Remote Sensing Archive with petabytes of data in one location 
✔ MODIS
✔ Landsats
✔ Sentinels
✔ NOAA NCEP

❑ A very powerful cloud-based geospatial processing platform (analyses are 
automatically parallelized on many CPUs).



HIghly Scalable Temporal Adaptive Reflectance Fusion 
Model (HISTARFM)



HISTARFM is a bias aware Kalman filter algorithm [3]



Validation of HISTARFM over thousands of sites [4].

Table 1: Results over a validation  data 
set

❏ Validation results (artificial gaps 
over CONUS)



Predicted band uncertainties by HISTARFM are realistic.
❏ Actual errors vs Predicted uncertainties [4]



Down-scaling MODIS FAPAR/LAI products in GEE



Porting MODIS LAI/FAPAR to 30m resolution
❏ Artificial neural networks (ANN) [6] were trained to learn MODIS LAI/FAPAR 

algorithm [5] from data using Landsat reflectance. 
❏ 4000 locations over the CONUS were used for training/validation  (2016).
❏We propagate HISTARFM uncertainties thru the ANN model.

General expression of an ANN: Error propagation (Taylor’s expansion):

J is the Jacobian matrix,                                    , and we 
used a linear output layer.         

where xi is the input feature i, n is the number of inputs, wij are 
the weights, bi is the bias term of the ith node, and  m is the 
number of nodes in the hidden layer.



Porting MODIS LAI/FAPAR to 30m resolution

❏ Validation over test 
datasets.

❏ Calculated high 
spatial (30 m) 
resolution LAI (right) 
versus the original 
NASA MOD15   (500 
m) product (left) in a 
cropland area.



MODIS LAI/FAPAR at 30m resolution in GEE (let’s go continental)
❏ Predicted LAI (30m) and its uncertainties (June, 2016)

❏ ANN produce almost instantly their 
estimates and predicted uncertainties. 

❏ Higher uncertainties are 
observed in croplands and gap 
filled data (as expected). 



Take-home messages

❏ HISTARFM allows to obtain gap-free reflectance observations over large areas.

❏ The validation of HISTARFM presented low errors for all Landsat bands. 

❏ ANN allowed to port easily, efficiently, and accurately standard MODIS products to Landsat native 
resolution.

❏ Error propagation methods and the HISTARFM predicted uncertainties allowed to provide realistic 
error maps of LAI/FAPAR.

❏ Many applications: crop monitoring, high resolution phenology,  GPP, and ET could take advantage 
of our gap free FAPAR/LAI estimates at broad scales.



Thanks!
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