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Mathematical description of lava dome evolution
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where x is the Cartesian coordinates; 7 1s time; p = p(#,x) is the density; u is the velocity;
7T is the temperature; 1(7,u, @) is the viscosity depending on temperature, velocity and the
concentration of crystals ¢ (described by a set of equations); p is the pressure; g is the

acceleration due to gravity; a(7,x)e[0.1] is the volume of lava in the model; p,.5, are

A
the air’s characteristic density and viscosity; p,,n, are the lava’s characteristic density and

viscosity; c(z.x) is the specific heat; and 4(z,x) is the coefficient of heat conduction.



Lava Rheology

Temperature-dependent viscosity 7, (Dragoni, 1989)

m(T)=exp(n(T.-T)),

where T is the temperature in Kelvin; T, is the typical lava melting
temperature; and n =4x10".

Temperature- and water-dependent viscosit\e:, (Giordano and Dingwell, 2003)
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where W is the water content in wt%, and 77.is the typical lava viscosity.



Lava Rheology

Lava viscosity depends on temperature and the volume fraction of crystals
(e.g., Griffiths, 2000; Costa et al., 2009)
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¢ is the volume fraction of crystals; ¢. (= 0.384) is the specific volume fraction of

crystals, &= (T —T,)/(T.-T,), T (= 1053 K) is the temperature of crystallization; B

(=2.5) is the Einstein coefficient’s theoretical value (1.5 to 5; Jeffrey and Acrivos, 1976);
5=13—y, y=7.701, 6, =05, b2=3/2, £=2.0x10", b, =/30

(Wright and Okamura, 1977; Marsh, 1981; Lejeune and Richet, 1995; Costa et al., 2009);

9., is the equilibrium value of the volume fraction of crystals, and 7 is the characteristic

time of the crystal content growth (CCGT).



Morphological Structures of Lava Domes

Left panel: emplacement of the
lava dome at Soufriere Hills
Volcano, Montserrat (photos
from Watts et al., 2002); central
panel: the shapes of relevant
structures; right panel.:
cartoons of the emplacement
features by Watts et al. (2002).
(a) Lava spines P (about 40 m
high and 35 m broad) and
Q;
(b) megaspine H (about 40 m
high and 100 m broad);
(c) whaleback structure S; and
3mm$'{::2525755::iﬁﬁ\ (d) lobe O of a topped lava
/_g e (about 20m thick) resting

* on rock debris.
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Lava Dome Growth: Thermal Influence (using LR1)

(a) Lava dome evolution (b)
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A part of the thin carapace
(high viscous layer)
zoomed in the inserts.




Crystal content growth during lava dome evolution (using LR?2)
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extrusion rate (U) decreases
CCGT (7) increases

The numerical experiments
differ by the magnitude of
extrusion rate and the crystal
content growth time (CCGT).
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Morphology of evolving lava domes (using LR2)
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(b) U =0.001
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Morphology of evolving lava domes (using LR2) r=1.8x10"s
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Morphology of the evolving lava dome
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The pancake-shaped dome (a, CCGT = 7.2x10° s)
evolves in 1.2x10° s at low extrusion rate.

The extrusion rate increases by two orders of
magnitude from experiment (b) to (d).
(b) CCGT = 7.2x10° s;

(c) CCGT = 7.2x10%s;

=4
(d) CCGT = 7.2x103 s. t, =4000 s

U=0.01ms" U=001ms" U=001ms"



CONCLUSION

A rapid magma ascent rate reduces the time for magma crystallization, and hence the
magma behaves as a less viscous fluid and extrudes on the surface in a more fluid-like
manner. The results of our numerical modelling show that with the decrease of the
extrusion rate, the crystalline magma switches from a fluid-type flow to a near solid-type
advancement. The formation of obelisk-shaped structures takes place at low rates of
extrusion, and the development of lobes and pancake-shaped structures occurs at the
higher rates. Meanwhile, spike- and obelisk-shaped domes can be developed at the high
extrusion rates as well, if the time of crystal content growth is small allowing the crystal
content to grow rapidly, hence, increasing the lava viscosity, which does not promote lava
flow but dome upbuilding. Also, we have shown that the volume-of-crystal-dependent
rheology rather than the temperature-dependent rheology (only) allows for obelisk- and
spine-shaped morphology of lava domes. The numerical models developed in this study
can be applied to constrain the evolution of natural lava domes with varying rates of
magma extrusion and to assess viscosity of lava base on observations of topography of lava
domes and extrusion rates. [The authors acknowledge a support from the Russian Science
Foundation, grant RSF-19-17-00027]
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