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Introduction

❏ Modeling and understanding the Earth system is a constant and challenging scientific 
endeavour.

❏ Learn from observational data using machine learning can be an alternative, but 
understanding is more difficult that fitting. [1,2,3]

❏ We introduce sparse regression to uncover a set of governing equations in the form of 
a system of ordinary differential equations (ODEs)... [4] 

❏ … and used to explicitly describe a simplest ODEs explaining data to model relevant 
components of the biosphere. [5]
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Sparse identification of dynamical systems

[4]



Sparse identification of dynamical systems 
We consider dynamical systems of the 
form:

that can be expanded as:

[4] For many systems, the right part of the equations are sparse in the 
space of possible functions, so a library of candidate functions li is needed:

❏ l1, l2, …, lm is a predefined finite library of candidate functions.
❏ express xi as a linear combinations of them with coefficients. 
❏ learn scalar coefficients 𝜀ij using ridge regression (RLR), LASSO 

(maximizes the number of zeros) or Elastic Net (ENet) (convex 
combination of the above)

❏ we need computing derivatives of the data: finite differences or by 
kernel regression aka Gaussian processes. [3, 6] 4



Results
❏ Lotka-Volterra
❏ Biosphere indicators
❏ Exploring other data



Toy problem: Lotka-Volterra system
❏ Prey-predator model in ecology:  

❏ We set 𝛼 = 3/2, 𝛽 = 1, 𝛾 = 3, 𝛿 = ½. 
❏ Synthetic data + two levels of AWGN: 40dB, 5dB.
❏ ridge regression, finite differences.
❏ train/test in 75%-25% samples.

❏ accurated correlation coefficient (R)...
❏ … so, ODE coefficients recovered accurately.
❏ critial points recovered without a qualitative change in their type (a saddle point & a center of cycles).  6
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❏ We use the biosphere indices proposed in [5] 
for summarizing the state of an ecosystem.

❏ Earth System Data Lab (ESDL)
❏ 12 variables (common spatiotemporal grid: 0.25º 

in space, 8 days in time)
❏ PCA incorporating information about latitude 

❏ First two principal components explained 
73% of variance→two biosphere indicators:
❏ PC1 summary of vegetation productivity
❏ PC2 summary of water availability

Biospheric indicators: data 

Trajectories in the phase space of this first two PCs for 
the most paradigmatic ecosystems along 11 years.

https://www.earthsystemdatalab.net/


(x 10-4)

R2 = 0.73 (Coefficient of determination)

❏ We start by focusing on the particular subtropical ecosystem. 
❏ Work with the mean seasonal cycle trajectory, which summarizes the state of the ecosystem 

throughout the year.

❏ System analysis: attractor at 0.000365± 0.00451995j
❏ (removing real part and recover the new system?)
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Biospheric indicators: learned dynamical model
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Biospheric indicators: learned dynamical model (II)
❏ We complete the study for the rest of the paradigmatic ecosystems.
❏ We learn the models not only using the first two PCs, but also for the first three PCs.
❏ Monomials with max. deg. from 2 up to 12. (bid.: {x2,xy,y2}, {x3,x2y,xy2,y3},…,{x12,x11y,…,y12}; trid.: 

{xiyjzk:i+j+k=12})
❏ We repeat each experiment 10 times with 10 different train/test partitions (in 75%-25%)

deg: best maximum degree
R2: coefficient of determination

bidimensional: PC1, PC2 tridimensional: PC1, PC2, PC3 

Ecosystem max. deg. 
(method) R2 Ecosystem max. deg.

(method) R2

Continental 3 (LASSO) 0.87 ± 0.06 Continental 3 (LASSO) 0.79 ± 0.23

Monsoon 4 (RLR) 0.25 ± 0.23 Moonsoon 3 (LASSO) 0.60 ± 0.29

Maritime 3 (RLR) 0.38 ± 0.25 Maritime 2 (RLR) 0.35 ± 0.16

Tropical 2 (RLR) 0.20 ± 0.12 Tropical 2 (RLR) 0.40 ± 0.17
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❏ NDVI/GPP
❏ looking for “good” pixels. 
❏ 9 years of data. 
❏ One measure per month.

R2=0.75

❏ GPP/VOD
❏ GPP tower: lat = -35.6557, lon = 148.1521

R2=0.81

Exploring other data: NDVI/GPP models, GPP/VOD models, ...



Conclusions and future work



Conclusions and future work
❏ Presented a methodology for obtaining an analytic model with ODEs from data using sparse 

identification.
❏ Applied to both a toy model and a set of biosphere indices obtained from EO.
❏ Learned model captures the dynamics of the system: water availability and vegetation 

productivity strongly coupled with exponential grow/decays.
❏ Study other (less aggressive) sparse-promoting strategies.
❏ Study other types of (more physically-inspired or large) orthonormal basis of functions.
❏ Interventional studies like distortions in the eigenvalues and its effects on the phase space.
❏ More careful study of the models with new data.
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