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Introduction

[ Modeling and understanding the Earth system is a constant and challenging scientific
endeavour.
(J Learn from observational data using machine learning can be an alternative, but

understanding is more difficult that fitting. [1,2,3]

(1 We introduce sparse regression to uncover a set of governing equations in the form of
a system of ordinary differential equations (ODEs)... [4]

(1 ... and used to explicitly describe a simplest ODEs explaining data to model relevant
components of the biosphere. [5]
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Sparse identification of dynamical systems

We consider dynamical systems of the [4] For many systems, the right part of the equations are sparse in the
form: space of possible functions, so a library of candidate functions . is needed:
=) = £ =) Dy (8) = ey (21 2n) + en1la (@1, 1) + o+ Eimbn (@1, 20)
x(t) e R" %mg(t) =enli(z1,...,xn) +enla(z1,...,2n) + ...+ Emlm(T1,. .., Tn)
that can be expanded as: :
d %wn(t) =enthi(z1,...,2n) +Emlo(T1,. .y 20) + oo+ Enmlm (@1, ..., 20)

() = (21, wn)
d a I, 1,.. 1 isapredefined finite library of candidate functions.
axz(t) = P Py 0 express X as a linear combinations of them with coefficients.
3 learn scalar coefficients g; Using ridge regression (RLR), LASSO
: (maximizes the number of zeros) or Elastic Net (ENet) (convex
d combination of the above)
Emn(t) = [n(@1, 0 70) 3 we need computing derivatives of the data: finite differences or by

kernel regression aka Gaussian processes. [3, 6]



Results

2 Lotka-Volterra
2 Biosphere indicators
o Exploring other data
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dsn)
= Ceh-piak
Toy problem: Lotka-Volterra system d‘%i e e
----- L
3  Prey-predator model in ecology: i coneaie
Coefficients
d Library functions 40 dB 5dB
—r = az-—fBzy J
Cff %f %y T %y
ZY = Twtomy z 1382 0 11404 0
y 0 -29123 0  -2.7946
2 Weseta=3/2,5=1y=3,0=". . 09?797 04?349 09?520 04(')/10
3  Synthetic data + two levels of AWGN: 40dB, 5dB. 23 S e PR
3 ridge regression, finite differences. - 0 0 0 0
3 train/test in 75%-25% samples. 3 0 0 0  -0.0001
1 0 0 0 0
@ accurated correlation coefficient (R)... R 0.9999 0.8674
3 ... so, ODE coefficients recovered accurately.
3 critial points recovered without a qualitative change in their type (a saddle point & a center of cycles). ©



1 We use the biosphere indices proposed in [5]
for summarizing the state of an ecosystem.
O Earth System Data Lab (ESDL

3 12 variables (common spatiotemporal grid: 0.25°
in space, 8 days in time)
a  PCAincorporating information about latitude

3 First two principal components explained

13% of variance—two biosphere indicators:

QO PC, summary of vegetation productivity
3 PCzsummary of water availability
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~——— Subtropical
~———Tropical rainforest

-Maritime climate
Monsoon climate

Trajectories in the phase space of this first two PCs for
the most paradigmatic ecosystems along 11 years.


https://www.earthsystemdatalab.net/
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Biospheric indicators: learned dynamical model

a1  We start by focusing on the particular subtropical ecosystem.
3  Work with the mean seasonal cycle trajectory, which summarizes the state of the ecosystem

throughout the year. 2
4pC; = £11l1(PC1,PC2) + ... + £1mlm(PC1, PC2)
%PCZ — EQIII(PCI.PCZ) s R (X, ,l,,l(PC1.PC2). 1k

£ PC1 = —37.5PC1 — 55.6PC2 — 31.9PC1PC2

O 0
%Pcz — 67.2PC1 + 44.8PC2 — 74.0PC1PC2 =
(x 104

3  System analysis: attractor at 0.000365: 0.00451995] s
Q  (removing real part and recover the new system?) 3 vector field . S
15 -1 <05 0 05 1 15 2

R2 = 0.13 (Coefficient of determination) PC



Biospheric indicators: learned dynamical model (l1)

We complete the study for the rest of the paradigmatic ecosystems.

We learn the models not only using the first two PCs, but also for the first three PCs.
Monomials with max. deg. from 2 up to 12. (bid.: {x2xy,y2}, I x2y xy2y3),... X2 xMy, ... y'2}; trid.:
IXyizki+j+k=12})
We repeat each experiment 10 times with 10 different train/test partitions (in 75%-25%)

bidimensional: PC1, PG2

Ecosystem

Continental
Monsoon

Maritime

Tropical

max. deg.

(method)
3 (LASSO)
4 (RLR)
3 (RLR)

2 (RLR)

R2

0.25:023
0.38:0.25
0.20: 0.12

tridimensional: PC,, PG, P[}3

Ecosystem

Continental
Moonsoon
Maritime

Tropical

max. deg.
(method)

3 (LASSO)
3 (LASSO)
2 (RLR)

2 (RLR)

R2

0.79:0.23
0.35:0.16
0.40:0.17
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PC,

deg: best maximum degree
R2: coefficient of determination
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3 NDVI/GPP 3  GPP/VOD
1 looking for “good” pixels. 3 GPP tower: lat = -35.65517, lon = 148.1521

9 years of data.
1 One measure per month.
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Conclusions and future work
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1 Presented a methodology for obtaining an analytic model with ODEs from data using sparse
identification.

Applied to both a toy model and a set of biosphere indices obtained from EO.

Learned model captures the dynamics of the system: water availability and vegetation
productivity strongly coupled with exponential grow/decays.

Study other (less aggressive) sparse-promoting strategies.

Study other types of (more physically-inspired or large) orthonormal basis of functions.
Interventional studies like distortions in the eigenvalues and its effects on the phase space.
More careful study of the models with new data.
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