

Towards Slow Earthquakes Forecasting

Gualandi A.^{1,*}, J.-P. Avouac¹, S. Michel² and D. Faranda^{3,4}

* adriano.geolandi@gmail.com

1 California Institute of Technology, Division of Geological and Planetary Sciences, Pasadena, CA, USA

2 Laboratoire de Géologie, Département de Géosciences, Ecole Normale Supérieure, PSL University, UMR CNRS 8538, Paris, France

3 LSCE-IPSL, CEA Saclay l'Orme des Merisiers, CNRS UMR 8212 CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France

4 - London Mathematical Laboratory, London, UK

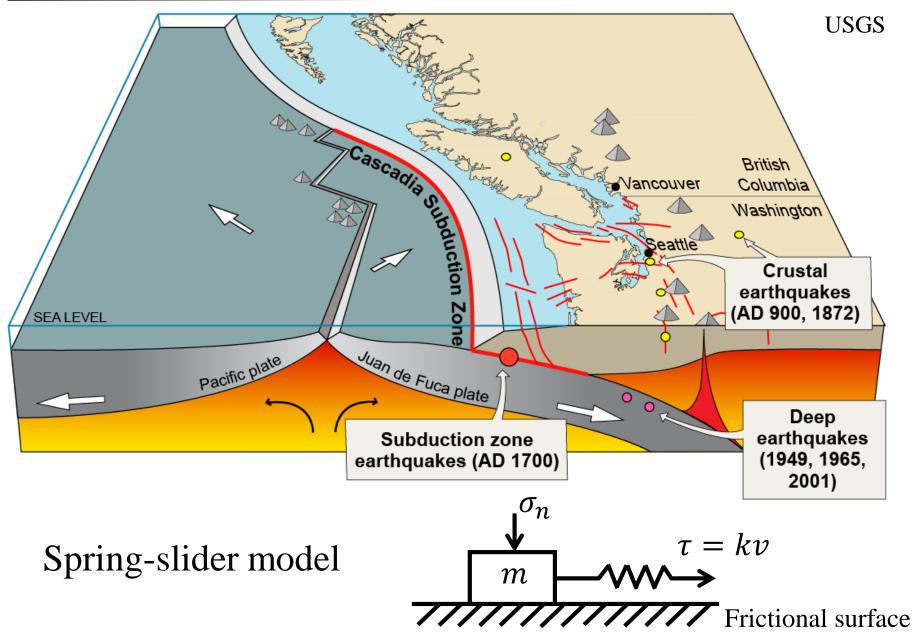
On-line meeting

4-8 May 2020

Background

۲

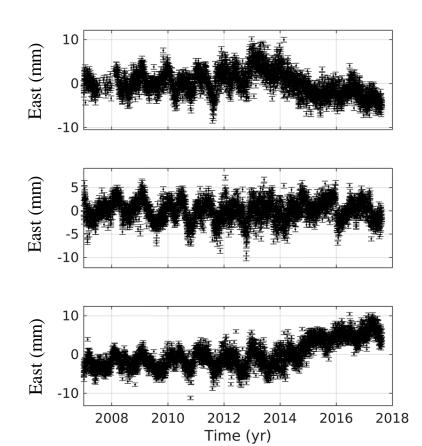
(cc

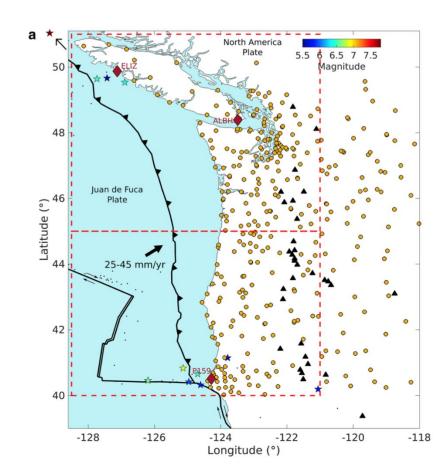


Tectonic setting and signal extraction

352 continuous GPS stations: 3-dim position every day for >10 yr (from 2007.0 to 2017.632)

Detrended and offsets corrected





Tectonic setting and signal extraction

displacement linear components U_i

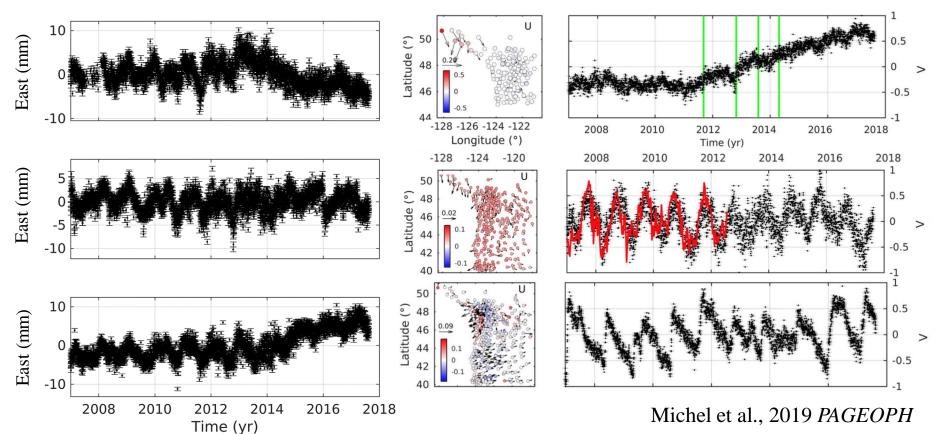
۲

$$X_{cen} \cong \sum_{i=1}^{R} \mathbf{U}_i S_{ii} \mathbf{V}'_i$$

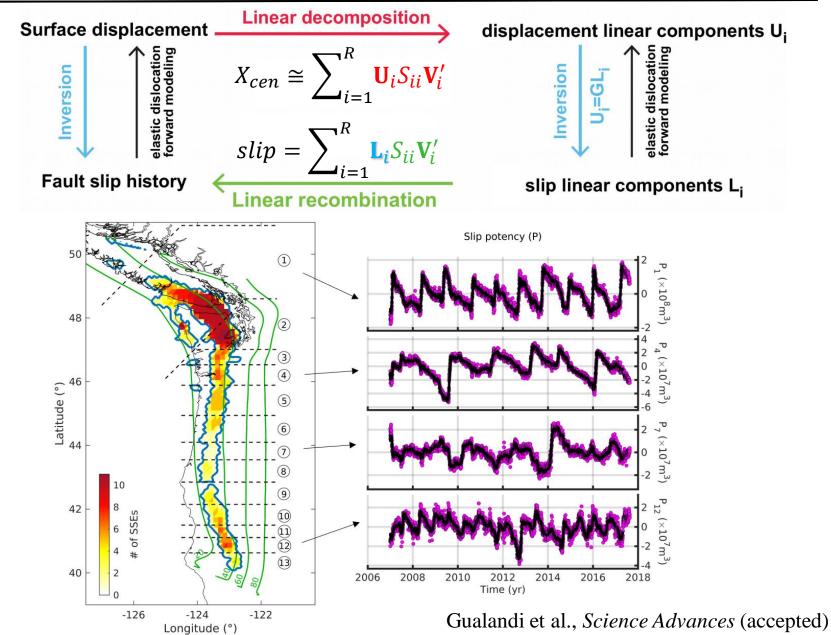
Linear decomposition

Surface displacement _

Modified from Kositsky and Avouac, 2010, JGR Gualandi et al., 2016, J. of Geod. Variational Bayesian Independent Component Analysis (vbICA)



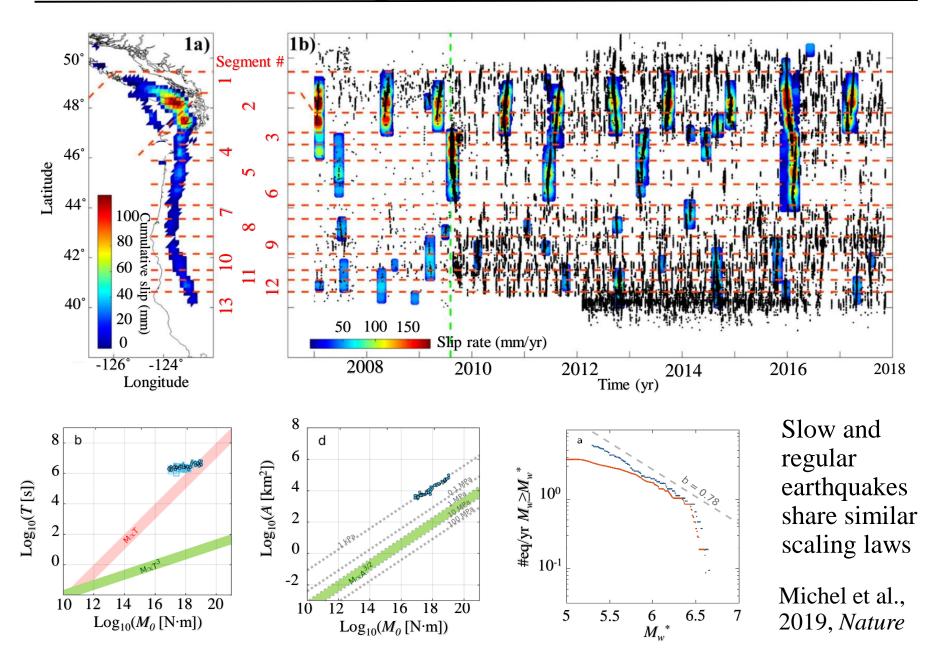
Tectonic setting and signal extraction



SSEs: earthquakes in slow motion

۲

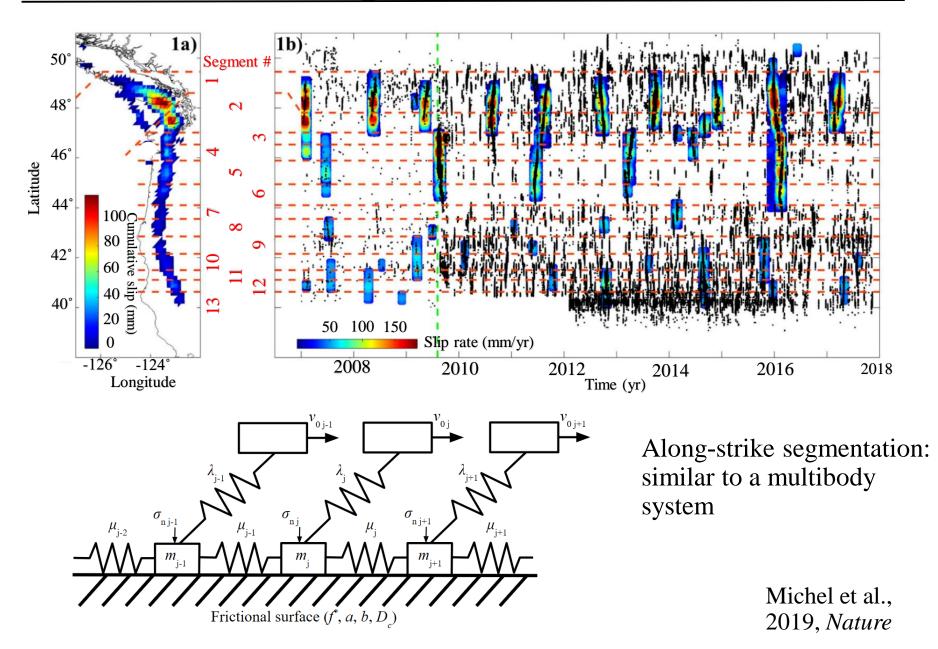
(cc)



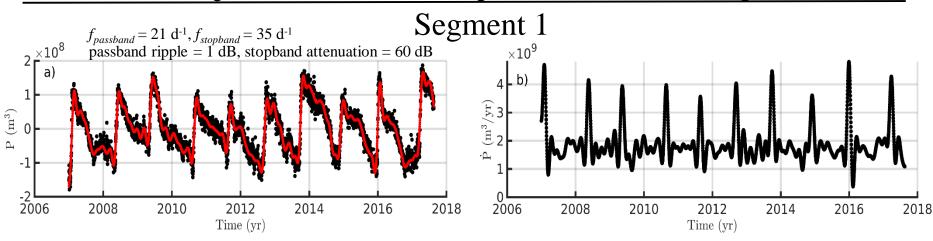
SSEs: earthquakes in slow motion

۲

(cc)



Dynamical system study



 $M_0 = \mu A \delta$ Seismic moment $P = A \delta$ Slip potency

- Can we characterize the SSEs dynamical system? (... better than Poissonian process)
 - Extreme Value Theory (EVT) applied to dynamical systems

(e.g., Faranda et al., 2017, Sci. Rep.)

- Instantaneous and average dimensions
- Instantaneous extremal index and metric entropy
- Implications for SSEs predictability

Gualandi et al., *Science Advances* (accepted)

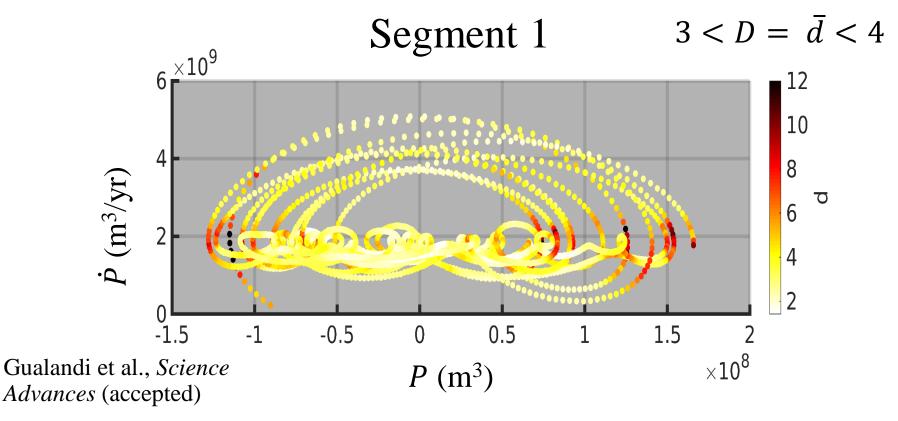
Instantaneous dimension d

 ζ point on a strange attractor

Faranda et al., 2017, *Sci. Rep.*

d density of neighbors around ζ (instantaneous dimension)

Hypothesis: The observed slip potency rate $\dot{P}(t)$ represents a state of the system and approximates a point ζ on the attractor



Can we trust the calculated dimension? Autocorrelated noise can fool dimension estimation

Solution: Surrogate data

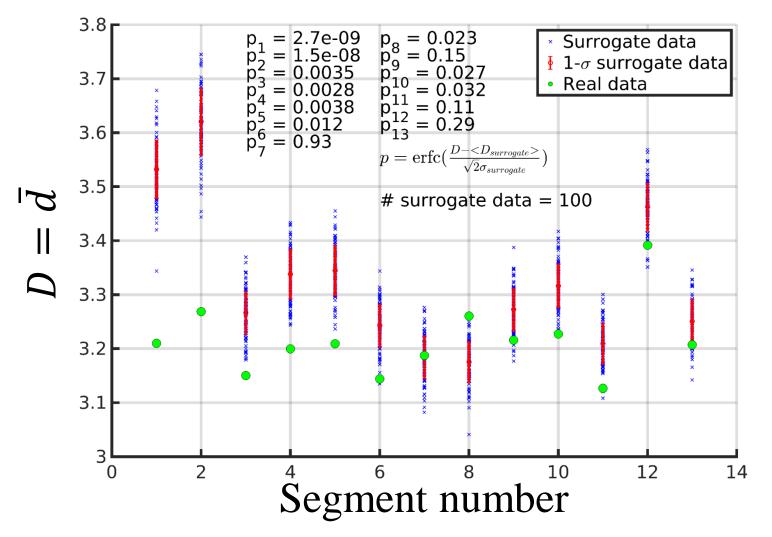
Null hypothesis

All the structure in the time series is given by the Fourier power spectrum

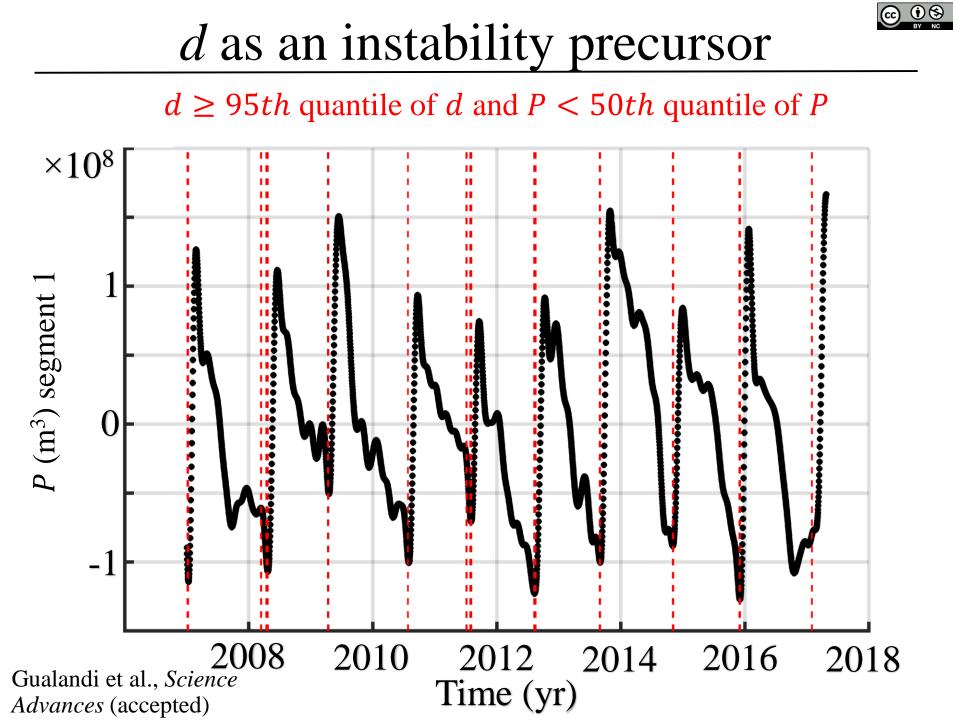
- Generate surrogate data randomizing the phase of the Fourier transformed data and calculate D
- Extension to multivariate time series

Theiler et al., 1992, *Physica D*; Prichard and Theiler, 1994, *Phys. Rew. Lett.*

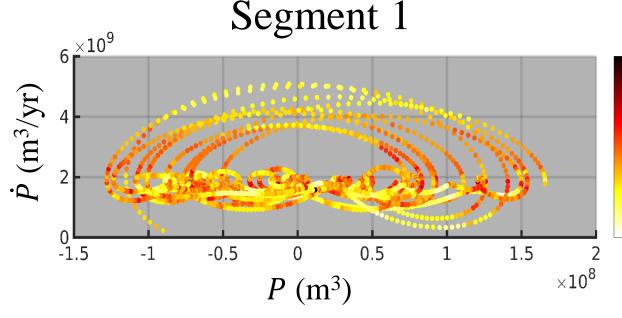
Surrogate data



If *D* derived from the data is significantly (p < 0.001) lower than *D* derived from the surrogate data \Rightarrow we can reject the null hypothesis for which the data can be described via a linear stochastic model and we infer that the time series are deterministic, low-dimensional and chaotic



Extremal index and metric entropy



 $\Theta \in [0,1]$: reciprocal of the mean cluster size

Gualandi et al., Science Advances (accepted)

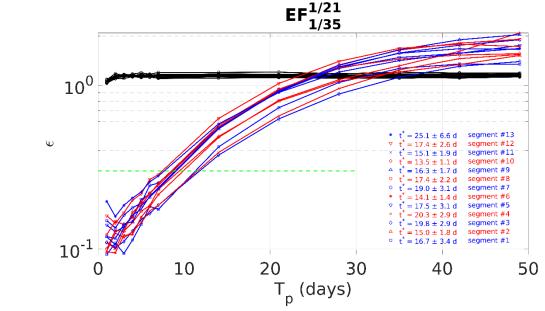
θ : instantaneous
extremal index.
Inverse of the
average persistence
time around a state
ζ of the phase
space

Smith and Weissman, 1994, Royal Statistical Society

Faranda and Vaienti, 2018, Chaos

 $\Theta \sim 1 - e^{-H} \Rightarrow H \sim -\ln(1 - \Theta)$ $H=\sum \Lambda_j^+$ Metric entropy = Sum positive Lyapunov exponents with multiplicity one $\overleftarrow{j=1} \Rightarrow 2 d \leq t^* = \frac{1}{H} \leq 65 d$ Predictability horizon

Non-linear Forecasting Analysis



Gualandi et al., Science Advances (accepted), after Farmer and Sidorowich, 1987, Phys. Rev. Lett.

$$\epsilon = \frac{\sqrt{\left\langle \left[\hat{P}(t,T_p) - \dot{P}(t+T_p)\right]^2\right\rangle}}{\sqrt{\left\langle \left[\dot{P}(t) - \left\langle \dot{P}(t) \right\rangle\right]^2\right\rangle}}$$

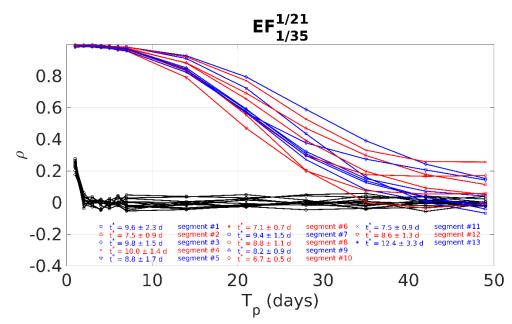
Black: unfiltered time series. Red and blue: causally filtered time series.

Embedding delay time $\tau = 7$ days Embedding dimension m = 9

 $\hat{P}(t,T_p)$ prediction of \hat{P} at time $t + T_p$ using k nearest neighbor in embedded space of past data to train a local linear estimator

 $t^* = 1/H$ calculated using points such that $\epsilon < \epsilon^* = 0.3$ (green dashed line)

Non-linear Forecasting Analysis



Gualandi et al., *Science Advances* (accepted), after Wales, 1991, *Nature*

 ρ correlation coefficient between $\hat{P}(t, T_p)$ and $\hat{P}(t + T_p)$

Black: unfiltered time series. Red and blue: causally filtered time series. Embedding delay time $\tau = 7$ days

Embedding dimension m = 9

 $\hat{P}(t,T_p)$ prediction of \hat{P} at time $t + T_p$ using k nearest neighbor in embedded space of past data to train a local linear estimator

 $t^* = 1/H$ calculated using points such that $\rho > 0.98$

Conclusions and Future Work

- SSEs: deterministic low-dimensional chaotic dynamics
- SSEs: $t^* \leq T \sim \text{days} \text{months}$
 - \Rightarrow earthquakes: $t^* \leq T \sim$ seconds? Long-term predictions seem intrinsically impossible.
- Weekly sampled data may be enough to predict SSEs, but noise reduction is needed if we want to apply this methodology in real time applications.
- Data Assimilation techniques, Unscentend Kalman Filter, or Machine Learning to predict time to failure and slip potency

adriano.geolandi@gmail.com