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Background
USGS
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Tectonic setting and signal extraction

352 continuous GPS stations: 3-dim position every day for >10 yr
(from 2007.0 to 2017.632)

Detrended and offsets corrected
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Tectonic setting and signal extraction
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Modified from Kositsky and Avouac, 2010, JGR
Gualandi et al., 2016, J. of Geod.
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Modified from Kositsky and Avouac, 2010, JGR
Gualandi et al., 2016, J. of Geod.

Variational Bayesian Independent Component Analysis 
(vbICA)

Michel et al., 2019 PAGEOPH



Tectonic setting and signal extraction
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SSEs: earthquakes in slow motion
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share similar 
scaling laws



SSEs: earthquakes in slow motion
L

at
it

u
d
e

40˚

48˚

46˚

44˚

42˚

50˚

C
u
m

u
lativ

e slip
 (m

m
)

0

40

80

60

20

100

2012 2014 2016 2018

1
3

1
21

11
0

9

8

7
1

2

3

4

5

6

15010050
Slip rate (mm/yr)

-126˚ -124˚
Longitude

2008 2010

Segment #

Time (yr)

Along-strike segmentation: 
similar to a multibody 
system

Michel et al., 
2019, Nature



Dynamical system study
Segment 1fpassband = 21 d-1, fstopband = 35 d-1

passband ripple = 1 dB, stopband attenuation = 60 dB

𝑀0 = 𝜇𝐴𝛿 𝑃 = 𝐴𝛿 Slip potencySeismic moment

- Extreme Value Theory (EVT) applied to dynamical systems

(e.g., Faranda et al., 2017, Sci. Rep.)

- Instantaneous and average dimensions

- Instantaneous extremal index and metric entropy

- Implications for SSEs predictability

- Can we characterize the SSEs dynamical system?

(… better than Poissonian process)

Gualandi et al., Science 
Advances (accepted)



Instantaneous dimension d
𝜁 point on a strange attractor

𝑑 density of neighbors around 𝜁
(instantaneous dimension)

Faranda et al., 2017,
Sci. Rep.

Hypothesis: The observed slip potency rate ሶ𝑃(𝑡) represents a state
of the system and approximates a point 𝜁 on the attractor
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Gualandi et al., Science 
Advances (accepted)



Surrogate data

Can we trust the calculated dimension?
Autocorrelated noise can fool dimension estimation

Solution: Surrogate data

Null hypothesis
All the structure in the time series is given by the Fourier power
spectrum
• Generate surrogate data randomizing the phase of the Fourier

transformed data and calculate D
• Extension to multivariate time series

Theiler et al., 1992, Physica D;
Prichard and Theiler, 1994, Phys. Rew. Lett.



𝐷
=

ҧ
𝑑

If D derived from the data is significantly (p<0.001) lower than D derived from the surrogate data      

⟹ we can reject the null hypothesis for which the data can be described via a linear stochastic model 

and we infer that the time series are deterministic, low-dimensional and chaotic

Surrogate data

Segment number

Gualandi et al., Science 
Advances (accepted)



d as an instability precursor
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Extremal index and metric entropy

Θ ∈ [0,1]: reciprocal of the mean cluster size

Θ ~ 1 − 𝑒−𝐻 ⇒ 𝐻 ~ − ln(1 − Θ)

𝐻 =

𝑗=1

𝐿

Λ𝑗
+

Metric entropy = Sum positive Lyapunov exponents with multiplicity one

⇒ 2 d ≲ 𝑡∗ =
1

𝐻
≲ 65 d Predictability horizon

Faranda and Vaienti, 2018,
Chaos

Smith and Weissman, 1994,
Royal Statistical Society

𝜃: instantaneous 
extremal index.
Inverse of the 
average persistence 
time around a state 
𝜁 of the phase 
space
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Non-linear Forecasting Analysis

ሶ𝑃 𝑡, 𝑇𝑝 prediction of ሶ𝑃 at time 𝑡 + 𝑇𝑝 using k nearest neighbor in embedded

space of past data to train a local linear estimator

Black: unfiltered time series.
Red and blue: causally filtered time
series.
Embedding delay time 𝜏 = 7 days
Embedding dimension 𝑚 = 9

𝜖 =

ሶ𝑃 𝑡, 𝑇𝑝 − ሶ𝑃(𝑡 + 𝑇𝑝)
2

ሶ𝑃(𝑡) − ሶ𝑃(𝑡)
2

𝑡∗ = 1/𝐻 calculated using points such that 𝜖 < 𝜖∗ = 0.3 (green dashed line)

Gualandi et al.,
Science Advances
(accepted),
after Farmer and
Sidorowich, 1987,
Phys. Rev. Lett.



Non-linear Forecasting Analysis

ሶ𝑃 𝑡, 𝑇𝑝 prediction of ሶ𝑃 at time 𝑡 + 𝑇𝑝 using k nearest neighbor in embedded

space of past data to train a local linear estimator

Black: unfiltered time series.
Red and blue: causally filtered time
series.
Embedding delay time 𝜏 = 7 days
Embedding dimension 𝑚 = 9

𝜌 correlation coefficient between
ሶ𝑃(𝑡, 𝑇𝑝) and ሶ𝑃(𝑡 + 𝑇𝑝)

𝑡∗ = 1/𝐻 calculated using points such that 𝜌 > 0.98

Gualandi et al.,
Science Advances
(accepted),
after Wales, 1991,
Nature



Conclusions and Future Work
- SSEs: deterministic low-dimensional chaotic dynamics

adriano.geolandi@gmail.com

- SSEs: 𝑡∗ ≲ 𝑇 ~ days − months

⇒ earthquakes: 𝑡∗ ≲ 𝑇 ~ seconds?
Long-term predictions seem intrinsically impossible.

- Weekly sampled data may be enough to predict SSEs,
but noise reduction is needed if we want to apply this
methodology in real time applications.

- Data Assimilation techniques, Unscentend Kalman
Filter, or Machine Learning to predict time to failure
and slip potency


