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Data assimilation (DA): initializing the weather
forecast from observations

time00

model

true weather

Model forecast combined
with observations

DA is uniquely challenging in weather forecasting
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Data assimilation, a Bayesian perspective

Filtering problem/Data assimilation: recursively, at each time tn

I estimate ’signal’ Xn (on a polish space M)

I given all the observations {Yk}k≤n ∈ Rd up to that time.

Optimal filter: optimal estimate of Xn, in the mean square sense.

I in Bayesian framework, it’s a seq. of conditional probabilities

Pn := P(Xn|Yn, ...Y1)

I for Gaussian, linear systems the optimal filter is KF

I explicit computation of the posterior is very computationally
expensive in nonlinear systems

I in practice, approximation algorithms are used (e.g. the
3DVAR, EnKF, particle filters)
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Optimal filter: an iterative two-step process

Let pn−1 be the density of the posterior at tn−1, f the dynamics
I prediction

p+
n−1 = Ppn−1 = P(Xn|Yn−1, ...,Y1)

where P is the transfer operator of f , mapping a probability
density of random variable Xn−1 to the density of f (Xn−1).
This becomes the new prior.

I update via Bayes:

pn = B(Yn)p+
n−1

where B(Yn) denotes multiplication with the likelihood and
the normalisation and depends on Yn

I filtering operator:

L̃Yn := B(Yn)P

so that pn = L̃Ynpn−1. 5 / 30



Stability is an important problem of filtering

Definition[Stability] Given any two initial prior distributions, say
P0 and Q0, a norm ‖ · ‖, and distributions Rn of the observations,
the filtering process is said to be stable

lim
n→∞

‖L̃nP0 − L̃nQ0‖ = 0,

where L̃n is shorthand for L̃n = L̃Yn ◦ ... ◦ L̃Y1 .

Why stability is important:

I initial condition P0 is required to initialise the filtering

I we don’t know the correct initial distribution accurately

I stability with a certain decay rate even allows treatment of
approximation errors
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Main assumptions

I Xn = f (Xn−1), for f : M → M uniformly hyperbolic
diffeomorphism, M a smooth manifold

I conditioned on Xn, the observations Yn are i.i.d.

I Yn are ergodic (if Xn are drawn from an ergodic distribution)

I assume there is a likelihood function g and measure ν s.t.

P(Yk ∈ A|Xk = x) =

∫
A
g(y , x)ν(dy). (1)

I g is Lipschitz continuous P almost surely and the Lipschitz
constant is a tempered random variable
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Filtering operator on L1(m)

We can define a new ’filtering’ operator that acts on any density
p(x) ∈ L1(m) by

LYnp(x) = g(Yn, x)Pp(x) (2)

and

L̃Ynp(x) =
LYnp(x)

‖LYnp(x)‖1
(3)

where the norm is taken in L1(m).

We define the filtering operator acting on measures as

L̄ωµ(ψ) :=

∫
g(ω, x) ◦ f ψ ◦ fdµ∫

g(ω, x) ◦ fdµ
(4)

I LYn is a linear operator related to P via the likelihood
function g
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Main result: Stability

Theorem[L.Oljaca, J. Bröcker, T.Kuna]: There exists a regular
conditional probability measure µ : Ω×M → [0, 1] and a set of
full measure Ω1 ⊆ Ω such that for all ω ∈ Ω1 and continuous ψ, it
holds that

L̄ωµω(ψ) = µTω(ψ). (5)

Furthermore, there exists a constant β̃ > 0 such that for all strictly
positive functions φ s.t log φ is ν-Hölder continuous, all ω ∈ Ω1

and µ̂-Hölder continuous ψ : Q → R, it holds that

lim
n→∞

n−1 log
∣∣∣ ∫ ψL̃ n

ωφdm −
∫
ψdµT nω

∣∣∣ ≤ −β̃.
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Literature I: Stability has been investigated for
various situations

The problem of stability can be studied in various contexts

I linear/nonlinear dynamics

I Gaussian/non-Gaussian priors/errors

I random/non-random signals

I optimal and non-optimal filters (e.g. 3DVAR and EnKF,
particle filters).

For linear, random dynamics

I stability of KF holds under some broad conditions on the
signal and observations [7]

For linear, deterministic systems (no model error)

I in context of DA, by Bouquet, Gurumoorthy, Apte, Carassi,
Grudzien and Jones, 2017 [2].
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Literature II: Stability for nonlinear, random
dynamical systems

Most work has focused on stochastic dynamics and relies on
mixing properties of the signal due to randomness

I based on work by Kunita[8], Ocone and Pardoux [12] show Lp

type convergence. Exponential convergence shown for e.g. KF

I Atar and Zeituni [1] extend result by showing a.s. exponential
stability in TV norm

I while Le Gland and Oudjane are able to further relax the
ergodicity assumptions on the signal process [9]

I Tong and Van Handel [13], show that the Stochastic 2D N-S
equations satisfy conditions in [5]. However does not provide
a rate of convergence.
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Literature III: Non-optimal filter stability

Question of whether they converge to the optimal filter or at least,
of estimating the error.

I It has been shown that stability with a certain decay rate
implies uniform convergence of the asymptotic approximation
error, see e.g. Crisan and Haine [6] or [10], [11], [9] and [4].

I Stable filters can be approximated numerically, with errors
that are bounded uniformly in time

I Furthermore, Crisan et al [4], show that a class of
approximations is stable and converge uniformly to the
optimal filter, whether the filter itself is stable or not.
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Literature IV: Deterministic nonlinear dynamics
more challenging

As there is no mixing due to stochastic effects, any “forgetting” of
the initial condition has to come from the dynamics

I Bröcker and Del Magno, 2017, show exponential stability for
expanding maps for sufficiently smooth initial condition [3]

Our aim: extend analysis to deterministic signals of
hyperbolic dynamical systems, using their chaotic nature
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Uniformly hyperbolic dynamics

I f : M → f (M) to be a diffeomorphism on a manifold M
I dynamics at every point in Λ ⊂ M (maximal invariant set) has

a contracting and expanding direction, which are transversal
I Anosov diffeomorphism, Axiom A systems
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Yn is stationary and ergodic

Theorem: f uniformly hyperbolic as described above, then f
admits a unique SRB measure µ0.

Proof: See Viana [14], ”Stochastic dynamics of deterministic
systems.”

From the above, it can be shown that:
I if X0 ∼ µ0, signal process generated by Xn = f (Xn−1) is

ergodic,
I if Yn is i.i.d. conditioned on Xn, it is also an ergodic process.

Can assume that Yn is a stationary and ergodic process

I there is an ergodic T : Ω→ Ω s.t.

Yn(ω) = Y1(T n−1ω)
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Idea of proof

I Find a space on which the filtering operator is a contraction
I Use ’cones’ of functions with Hilbert projective metric

I A cone in vector space E , is a subset C ⊂ E\{0} satisfying
v ∈ C , t > 0⇒ tv ∈ C

I Convex if t1v1 + t2v2 ∈ C for any t1, t2 > 0 and v1, v2 ∈ C
I A cone is proper if C ∩ −C = ∅

Source: Wikipedia 16 / 30



Hilbert projective metric

Given v1, v2 ∈ C we define

α(v1, v2) = sup{t > 0; v2 − tv1 ∈ C},

β(v1, v2) = inf{s > 0; sv1 − v2 ∈ C}.

Hilbert Projective Metric

Let C be a proper convex cone. Given v1, v2 ∈ C , define the
projective metric

θ(v1, v2) = log
β(v1, v2)

α(v1, v2)

with θ(v1, v2) = +∞ if α(v1, v2) = 0 or α(v1, v2) = +∞.

θ induces a distance in the projective quotient of C :
θ(v1, v2) = 0 ⇐⇒ v1 = tv2 for some t > 0
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Hilbert projective metric II

I E1 and E2 vector spaces
I Ci ⊂ Ei proper convex cones
I L : E1 → E2 be a linear operator such that L(C1) ⊂ C2

α1(v1, v2) = sup{t > 0; v2 − tv1 ∈ C1}
≤ sup{t > 0; L(v2 − tv1) ∈ C2} = α2(Lv1, Lv2)

Also, β1(v1, v2) ≥ β2(Lv1, Lv2)⇒ θ1(v1, v2) ≥ θ2(L(v1), L(v2)).

L is a strict contraction if diameter is finite

Let D = sup{θ2(Lv1, Lv2); v1, v2 ∈ C1}. If D < +∞ then

θ2(Lv1, Lv2) ≤ (1− e−D)θ1(v1, v2).

Hilbert metric allows us to work with the linear part of the filtering
operator as the normalization can be ignored 18 / 30



Idea of proof

Key idea (adapted from Viana [14]): Average densities along
the stable direction against test functions

I along the stable manifolds we have contraction, which
amplifies oscillations (or errors in initial density)

I must allow the density to become ’singular’ on stable leaves

I expansion along unstable direction has effect of making
densities smoother
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Idea of proof: back to Solenoid example

Source: M. Viana, Stochastic dynamics of deterministic systems

I contraction along the B2 disks (foliation of stable leaves); for
the solenoid uniquely defined by the θ ∈ S1

I expansion along the S1x{z}, for any z ∈ B2

I every leaf γ has two pre-images, γj , also leaves, such that
f (γj) ⊂ γ, for j = 1, 2
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Idea of proof: back to Solenoid example II

I γ and δ two nearby local stable leaves

I π : γ → δ be the projection along the unstable direction, that
is

x = (θ1, z) ∈ γ → πx = (θ2, z) ∈ δ
I let d(x , πx) is distance measured along the unstable leaves

I define a distance on the space of stable leaves

d(γ, δ) = sup
x∈γ

d(x , π(x))

I map induced by f on the stable leaves is expanding for
this distance

d(γj , δj) ≤ λud(γ, δ),

where λu < 1.
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Idea of proof

Define a metric space of densities

I (Cones with Hilbert projective metrics) on which the operator
Lω is a contraction

C (c , a, µ, ν) := {φ;

∫
γ φρ∫
δ φπ

∗ρ
≤ ecd(γ,δ)ν ,∀γ, δ ∈ Γ, ρ ∈ D(a, µ, γ)},

(6)
where we define the density π∗ρ(y) := ρ(π(y))| detDπ(y)|.
We define the (random) cones

LωC (cω, aω, µ, ν) ⊂ C (cTω, aTω, µ, ν).
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Idea of proof and concluding remarks

I we would like to use a fixed point theorem to deduce
asymptotic convergence to a density

I however, clearly we cannot have completeness in the cones, as
the densities become singular on stable leaves

I use a ’weak’ fixed point theorem to deduce that there is
convergence to a distribution, regardless of initial density (up
to some Hölder regularity)

In conclusion, dynamics can be sufficiently mixing so that filter
forgets initial condition

I initial condition needs to be a density with some smoothness
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Appendix
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Assumptions and notation

I conditioned on Xn, the observations Yn are i.i.d.

P(Yn, ...,Y1|Xn) = Πn
k=1P(Yk |Xk) (7)

I assume there is a likelihood function g and measure ν s.t.

P(Yk ∈ A|Xk = x) =

∫
A
g(y , x)ν(dy). (8)

I denote the transition kernel of Xn

K (z ,B) = P(Xn ∈ B|Xn−1 = z) (9)

I let P0(B) = P(X0 ∈ B) be an the initial prior distribution.
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Filtering equations I

Proposition Under assumptions above, the filtering process
Pn := P(Xn|Yn, ...Y1) satisfies the following recursion

Pn(ψ) =

∫
M ψ(x)g(Yn, x)dP+

n−1(x)∫
M g(Yn, x)dP+

n−1(x)
, (10)

where we define P+
n−1 as

P+
n−1(ψ) =

∫
M

∫
M
ψ(x)K (z , dx)dPn−1(dz) (11)

for all continuous ψ : M → R.
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Filtering equations II: deterministic dynamics

Assume that Xn is deterministic, Xn = f (Xn−1), for f : M → M,
M a smooth manifold

I Xn is completely determined by X0; all uncertainty comes
from the uncertainty in the initial condition

Proposition Suppose Pn has a density pn(x) w.r.t. to Riemannian
volume m. Then also Pn+1 has a density pn+1(x) given by

pn+1(x) =
g(Yn, x)Ppn(x)∫

M g(Yn, x)Ppn(x)dm(x)
(12)

where P is the transfer operator mapping a probability density of
random variable X to the density of f (X ).
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Uniformly hyperbolic dynamics

I f : M → f (M) to be a diffeomorphism on a manifold M

I Λ the maximal invariant set

I Λ is a uniformly hyperbolic set if there exists a splitting of the
tangent bundle to M on Λ into stable and unstable directions;

TΛM = E s
Λ ⊕ Eu

Λ ,

and a constant λ0 < 1 such that for some Riemannian metric
‖ · ‖ on M it holds that
1. Df (x) · E s

x = E s
f (x) and Df −1(x) · Eu

x = Eu
f −1(x)

2. ‖Df (x)|E s
x ‖ ≤ λ0 and ‖Df −1(x)|Eu

x ‖ ≤ λ0 for every x ∈ Λ.
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Arnold’s cat map

Hyperbolic toral automorphism F : T2 → T2 defined by

F (x) =

(
2 1
1 1

)
x mod 1 (13)

Source: Wikipedia
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Solenoid or Smale -Williams attractor

In this case the manifold is a solid torus given by T = S1 × B2 and
the dynamics is produced by the map f : T→ T given by

S1 × B2 3 (θ, z)→ (2θ mod Z, ρe2πiθ + λz),

with suitable constants λ < ρ and λ+ ρ < 1 producing a
contraction in the B2 direction.

Source: Wikipedia
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