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Data assimilation (DA): initializing the weather

forecast from observations

t Q0. ¥ time

Model forecast combined

with observations
true weather

DA is uniquely challenging in weather forecasting
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Data assimilation, a Bayesian perspective

Filtering problem/Data assimilation: recursively, at each time t,
» estimate 'signal’ X, (on a polish space M)
» given all the observations { Y }x<n € RY up to that time.

Optimal filter: optimal estimate of X,,, in the mean square sense.

» in Bayesian framework, it's a seq. of conditional probabilities

Py i=P(Xn|Yp, ... Y1)

» for Gaussian, linear systems the optimal filter is KF

» explicit computation of the posterior is very computationally
expensive in nonlinear systems

» in practice, approximation algorithms are used (e.g. the
3DVAR, EnKF, particle filters)
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Optimal filter: an iterative two-step process

Let p,—1 be the density of the posterior at t,_1, f the dynamics
» prediction

P L= Ppp1=P(Xa|Yno1,..., Y1)

where &2 is the transfer operator of f, mapping a probability
density of random variable X,,_1 to the density of f(X,_1).
This becomes the new prior.

» update via Bayes:

p”_B( )pn 1

where B(Y,) denotes multiplication with the likelihood and
the normalisation and depends on Y,
» filtering operator:

jy =

n

B(Y,) &
so that p, = ,izynpn_l.
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Stability is an important problem of filtering
Definition[Stability] Given any two initial prior distributions, say

Py and Qp, a norm || - ||, and distributions R, of the observations,
the filtering process is said to be stable

lim |3 Po — ZnQol| = 0,
where oiz,, is shorthand for &, = jyn 0...0 ,,izyl.

Why stability is important:
» initial condition Py is required to initialise the filtering
» we don't know the correct initial distribution accurately
» stability with a certain decay rate even allows treatment of

approximation errors
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Main assumptions

» X, = f(Xp-1), for f : M — M uniformly hyperbolic
diffeomorphism, M a smooth manifold

» conditioned on X,,, the observations Y, are i.i.d.
» Y, are ergodic (if X, are drawn from an ergodic distribution)

» assume there is a likelihood function g and measure v s.t.

B(Yi € AlXe = x) = /A g(y, X)u(dy). (1)

» g is Lipschitz continuous P almost surely and the Lipschitz
constant is a tempered random variable

~
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Filtering operator on L}(m)

We can define a new 'filtering’ operator that acts on any density
p(x) € L(m) by

Zy,p(x) = &(Yn, x)Zp(x) (2)
and
5 _ Zy,p(x)
FP) = 2y, pl e

where the norm is taken in L1(m).

We define the filtering operator acting on measures as

~ B [ g(w,x)ofipofdu
Fot0) = T ) o

(4)

» Zy, is a linear operator related to & via the likelihood
function g
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Main result: Stability

Theorem|[L.Oljaca, J. Brocker, T.Kuna]: There exists a regular
conditional probability measure p: Q x .# — [0,1] and a set of
full measure Q1 C Q such that for all w € Q1 and continuous ¥, it
holds that

Zwﬂw(¢) = ,UTw(w)- (5)

Furthermore, there exists a constant 3 > 0 such that for all strictly
positive functions ¢ s.t log ¢ is v-Holder continuous, all w € £
and [i-Holder continuous ¢ : @ — R, it holds that

Jim n~tog | [ .Z20dm — [ vdure| <~
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Literature I: Stability has been investigated for

various situations

The problem of stability can be studied in various contexts
» linear/nonlinear dynamics
» Gaussian/non-Gaussian priors/errors
» random/non-random signals
» optimal and non-optimal filters (e.g. 3DVAR and EnKF,
particle filters).
For linear, random dynamics
» stability of KF holds under some broad conditions on the
signal and observations [7]
For linear, deterministic systems (no model error)
» in context of DA, by Bouquet, Gurumoorthy, Apte, Carassi,
Grudzien and Jones, 2017 [2].
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Literature |I: Stability for nonlinear, random

dynamical systems

Most work has focused on stochastic dynamics and relies on
mixing properties of the signal due to randomness

» based on work by Kunita[8], Ocone and Pardoux [12] show LP
type convergence. Exponential convergence shown for e.g. KF

» Atar and Zeituni [1] extend result by showing a.s. exponential
stability in TV norm

» while Le Gland and Oudjane are able to further relax the
ergodicity assumptions on the signal process [9]

» Tong and Van Handel [13], show that the Stochastic 2D N-S
equations satisfy conditions in [5]. However does not provide
a rate of convergence.
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Literature Ill: Non-optimal filter stability

Question of whether they converge to the optimal filter or at least,
of estimating the error.

» It has been shown that stability with a certain decay rate
implies uniform convergence of the asymptotic approximation
error, see e.g. Crisan and Haine [6] or [10], [11], [9] and [4].

» Stable filters can be approximated numerically, with errors
that are bounded uniformly in time

» Furthermore, Crisan et al [4], show that a class of
approximations is stable and converge uniformly to the
optimal filter, whether the filter itself is stable or not.
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Literature IV: Deterministic nonlinear dynamics

more challenging

As there is no mixing due to stochastic effects, any “forgetting” of
the initial condition has to come from the dynamics

» Brocker and Del Magno, 2017, show exponential stability for
expanding maps for sufficiently smooth initial condition [3]

Our aim: extend analysis to deterministic signals of
hyperbolic dynamical systems, using their chaotic nature
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Uniformly hyperbolic dynamics

/

» f: M — f(M) to be a diffeomorphism on a manifold M
» dynamics at every point in A C M (maximal invariant set) has
a contracting and expanding direction, which are transversal

» Anosov diffeomorphism, Axiom A systems
14 /30
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Y, is stationary and ergodic

Theorem: f uniformly hyperbolic as described above, then f
admits a unique SRB measure py.

Proof: See Viana [14], " Stochastic dynamics of deterministic
systems.”

From the above, it can be shown that:
» if Xo ~ po, signal process generated by X, = f(X,-1) is
ergodic,
» if Y, is i.i.d. conditioned on X, it is also an ergodic process.

Can assume that Y/, is a stationary and ergodic process
» there is an ergodic T : Q2 — Q s.t.

Yo(w) = Ya(T" w)
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Idea of proof

v

Find a space on which the filtering operator is a contraction
Use 'cones’ of functions with Hilbert projective metric

v

» A cone in vector space E, is a subset C C E\{0} satisfying
ve(Ct>0=tveC

Convex if tjvy + tovp € C for any t1,tp > 0 and vi, v € C
A cone is proper if CN —C =)

vy

Source: Wikipedia 16 /30
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Hilbert projective metric

Given v1, v» € C we define
a(vi, va) =sup{t > 0;v» — tv; € C},

B(vi,va) =inf{s > 0;sv; — va € C}.

Hilbert Projective Metric

Let C be a proper convex cone. Given vi, v» € C, define the
projective metric
B(v1, v2)
0 Vi, Vo) = Iog —_—
( ) a(vi, v2)
with 0(vi1, v») = 400 if a(vi, v2) =0 or a(vy, vo) = +o0.

f induces a distance in the projective quotient of C:
O(vi,vn) =0 <= v; = tv, for some t > 0

17 /30
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Hilbert projective metric Il

» E; and E; vector spaces

» C; C E; proper convex cones

» L: E; — E; be a linear operator such that L(C) C G

a1(vi, o) =sup{t > 0;vo —tv; € G1 }
<sup{t > 0;L(va — tv;) € Go} = ap(Lvi, Lwvp)

Also, B1(v1, v2) 2> Ba(Lva, Lva) = 01(v1, v2) > O2(L(v1), L(v2)).
L is a strict contraction if diameter is finite
Let D = sup{fa(Lvi, Lva); vi,vo € Ci}. If D < 400 then

(92(LV17 LV2) < (1 — e’D)Hl(vl, V2).

Hilbert metric allows us to work with the linear part of the filtering

operator as the normalization can be ignored 18/30
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Idea of proof

Key idea (adapted from Viana [14]): Average densities along
the stable direction against test functions

» along the stable manifolds we have contraction, which
amplifies oscillations (or errors in initial density)

» must allow the density to become 'singular’ on stable leaves

» expansion along unstable direction has effect of making
densities smoother

19/30
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Idea of proof: back to Solenoid example

Figure 4.1: The solenoid on the solid torus @

Source: M. Viana, Stochastic dynamics of deterministic systems

» contraction along the B? disks (foliation of stable leaves); for
the solenoid uniquely defined by the § € S!

» expansion along the S'x{z}, for any z € B?

» every leaf v has two pre-images, ;, also leaves, such that
f(vj) Cry, forj=1,2
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v

|dea of proof: back to Solenoid example Il

~ and & two nearby local stable leaves
vy — § be the projection along the unstable direction, that
is
x=(01,z) ey = mx=(02,2) €0
let d(x,mx) is distance measured along the unstable leaves
define a distance on the space of stable leaves
d(7,6) = sup d(x,7(x))

xey

map induced by f on the stable leaves is expanding for
this distance
d(v5,05) < Aud(v,0),

where A\, < 1.
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Idea of proof

Define a metric space of densities

» (Cones with Hilbert projective metrics) on which the operator
%, is a contraction

I, o0

% (c,a,pu,v) = {¢; [ ¢m*p < e vy 5 €T, p e D(a, 7))},
1)

onp =
(6)

where we define the density 7*p(y) := p(7(y))| det Dr(y)|.
We define the (random) cones

gw(g(cun Aw ;s [y V) C (g(CTuM aTw; K, V)'
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Idea of proof and concluding remarks

» we would like to use a fixed point theorem to deduce
asymptotic convergence to a density

» however, clearly we cannot have completeness in the cones, as
the densities become singular on stable leaves

» use a 'weak’ fixed point theorem to deduce that there is
convergence to a distribution, regardless of initial density (up
to some Holder regularity)

In conclusion, dynamics can be sufficiently mixing so that filter
forgets initial condition

» initial condition needs to be a density with some smoothness
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Assumptions and notation

v

conditioned on X, the observations Y, are i.i.d.

P(Yn, ..., Yi|Xn) = NE_1P(Yi|Xk) (7)

v

assume there is a likelihood function g and measure v s.t.

P(Yi € AXi = x) = [ &y 0m(dy), (8)

v

denote the transition kernel of X,

K(z,B) =P(X, € B|Xp—1 = 2) (9)

v

let Po(B) =P(Xo € B) be an the initial prior distribution.

25 /30
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Filtering equations |

Proposition Under assumptions above, the filtering process
P :=P(Xp|Yan, ... Y1) satisfies the following recursion

S 0 (x)g(Yn, x)dP, 1 (x)
Jmsl( me)dPr—:;l( )

Pu(v) = (10)

where we define P;r_l a

S
PI(0) = /M /M BO)K(z, d)dPor(dz) (1)

for all continuous ¢ : M — R.

26
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Filtering equations |l: deterministic dynamics

Assume that X, is deterministic, X, = f(X,-1), for f : M — M,
M a smooth manifold

» X, is completely determined by Xp; all uncertainty comes
from the uncertainty in the initial condition

Proposition Suppose P, has a density p,(x) w.r.t. to Riemannian
volume m. Then also P,;1 has a density p,1+1(x) given by

g(Yn, x) P pp(x)
f/v]g Yo, X) 2 pa(x)dm(x)

where &2 is the transfer operator mapping a probability density of
random variable X to the density of f(X).

pn+1( ) (12)
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Uniformly hyperbolic dynamics

» f: M — f(M) to be a diffeomorphism on a manifold M
» A the maximal invariant set

» Ais a uniformly hyperbolic set if there exists a splitting of the
tangent bundle to M on A into stable and unstable directions;

TAM = Ej @ E},

and a constant A\g < 1 such that for some Riemannian metric
| - || on M it holds that

1. Df(x) - E; = Ef mmin‘%x)-E“—-E“lw)

2. |DF(x)|EZ|| < Ao and [|DF ~(x)|EY|| < Ao for every x € A.

28 /30
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Arnold’s cat map

Hyperbolic toral automorphism F : T? — T? defined by

F(x) = (1 1)x mod 1

(13)

Source: Wikipedia

faQe
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Solenoid or Smale -Williams attractor

In this case the manifold is a solid torus given by T = S! x B? and
the dynamics is produced by the map f : T — T given by
Sl x B?

(0,2) = (20 mod Z, pe®™® + \z)
with suitable constants A < p and A+ p < 1 producing a
contraction in the B? direction

—

Source: Wikipedia
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