Joint presentation for EGU2020-19662 and EGU2020-4685 in

Session ERE2.6: Exploration, utilization and monitoring of conventional and unconventional geothermal resources

GF7

POTSDAM

EGU2020-19662

The geothermal potential of sedimentary basins – case study for Berlin, Germany

Judith Bott¹, Maximilian Frick^{1,*}, Nora Koltzer^{1,2}, Mauro Cacace¹, Björn Lewerenz¹, Michael Schneider³, Magdalena Scheck-Wenderoth^{1,2}

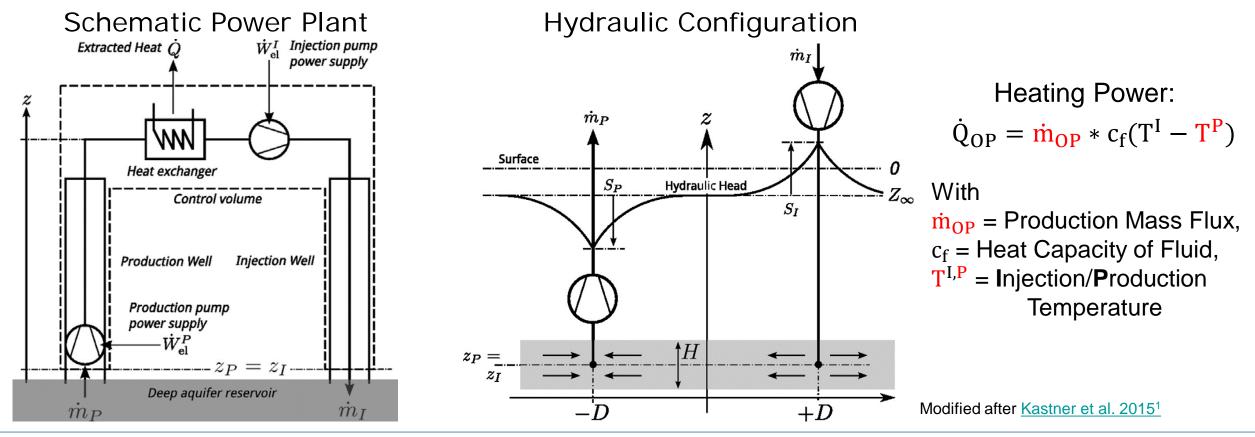
> ¹GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
> ²RWTH Aachen University, Lochnerstrasse 4 - 20, 52056 Aachen, Germany
> ³Freie Universität Berlin, Malteserstr. 74-100, 12249 Berlin, Germany
> *mfrick@gfz-potsdam.de

EGU2020-4685

Influence of fluid flow and heat transport on predictions of geothermal potentials in sedimentary layers of Hesse (Germany)

> Nora Koltzer^{1,2,*}, Maximilian Frick¹, Magdalena Scheck-Wenderoth^{1,2}, Björn Lewerenz¹, Kristian Bär³, Judith Bott¹

¹GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
²RWTH Aachen University, Lochnerstrasse 4 - 20, 52056 Aachen, Germany
³Technische Universität Darmstadt, Institute of Applied Geosciences, Department of Geothermal Science and Technology, Darmstadt, Germany
*mfrick@gfz-potsdam.de



Predict Geothermal Potential via Heating Power of a Geothermal Doublet

after <u>Kastner et al. 2015¹</u> as presented in <u>Frick 2019²</u> and Koltzer 2020³ For more details about the methodology please refer to the papers above

¹Kastner, O., Sippel, J., & Zimmermann, G. (2015). Regional-Scale Assessment of Hydrothermal Heat Plant Capacities Fed from Deep Sedimentary Aquifers in Berlin/Germany. *Geothermics*, 53, 353–367. <u>https://doi.org/10.1016/j.geothermics.2014.06.002</u>

²Frick, M. (2019). Towards a more sustainable utilization of the urban geological subsurface: Insights from 3D thermohydraulic models [PhD Thesis, FU Berlin]. <u>https://refubium.fu-berlin.de/handle/fub188/23868</u> ³Koltzer, N. (2020). Influences of the hydrodynamics on the thermal field of the Upper Rhine Graben and implications for predictions of its geothermal potentials [PhD Thesis]. RWTH Aachen, submitted for publication.

Helmholtz-Zentrum

GFZ

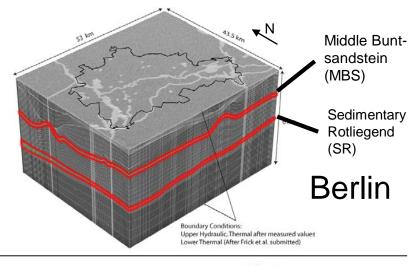
Input Parameters for Calculation of Geothermal Potentials of Berlin and Hesse

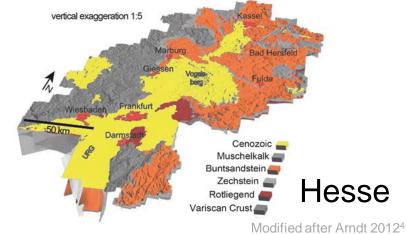
1) Geological Structure:

We utilized detailed geological models for both model regions as shown in <u>Frick et al., 2019¹</u> (Berlin) and <u>Koltzer et al., 2019²</u> (Hesse) focusing on promising reservoirs (see Figures on the right).

We use the **reservoir thickness** as well as **reservoir depth** as input parameters.

2) Physical Properties:


The physical properties of each reservoir are divided into **fixed** and **variable**: **Fixed**: Natural hydraulic head Z_{∞} [m], Effective Porosity φ [], Permeability κ [m²] **Variable**: Salinity *c*, Fluid density ρ , Dynamic viscosity μ , Specific heat capacity c_f and most importantly: Reservoir **Temperature** T^P [°C].

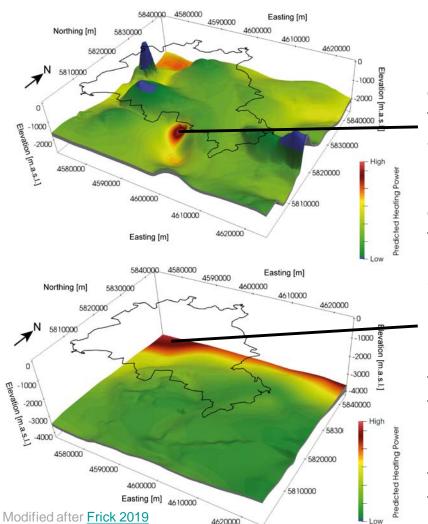

Temperatures are taken from the most recent model realization considering coupled thermohydraulic simulations for Hesse (Koltzer et al., 2019²) and for Berlin with anthropogenic forcing (Frick et al., 2019²).

Sensitivity to considered physics (conductive, advective, convective) was also investigated (Manuscript in preparation).

3) Doublet Configuration:

Reinjection temperature T^{I} [°C], Reservoir Lifetime a [years], Well Caliber R [m]

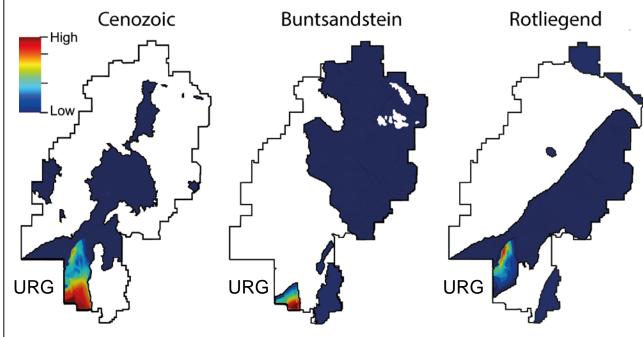
HELMHO


GFZ Helmholtz-Zentrum Potsdam

¹Frick, M., Scheck-Wenderoth, M., Schneider, M., & Cacace, M. (2019). Surface to Groundwater Interactions beneath the City of Berlin: Results from 3D Models. *Geofluids*, 2019. <u>https://doi.org/10.1155/2019/4129016</u> ²Koltzer, N., Scheck-Wenderoth, M., Bott, J., Cacace, M., Frick, M., Sass, I., Fritsche, J.-G., & Bär, K. (2019). The Effects of Regional Fluid Flow on Deep Temperatures (Hesse, Germany). *Energies*, 12(11), 2081. <u>https://doi.org/10.3390/en12112081</u> ³Frick, M. Scheck-Wenderoth, M. Cacace, M. & Schneider, M. (2019). Boundary condition control on inter-aquifer flow in the subsurface of Berlin (Germany) – new insights from 3-D numerical modelling. *Advances in*

³Frick, M., Scheck-Wenderoth, M., Cacace, M., & Schneider, M. (2019). Boundary condition control on inter-aquifer flow in the subsurface of Berlin (Germany) – new insights from 3-D numerical modelling. Advances in Geosciences, 49, 9–18. https://doi.org/10.5194/adgeo-49-9-2019

⁴Arndt, D. (2012). Geologische Strukturmodellierung von Hessen zur Bestimmung von Geopotenzialen [Dissertation]. TU Darmstadt.


Results: Predicted Heating Power Berlin Hesse

Middle Buntsandstein High: Tempelhof due to high transmissivities and temperatures Low: Over salt pillows and diapirs due to low temperatures

Sedimentary Rotliegend High: Northern Model domain due to high

transmissivities Low: Central Model domain due to low transmissivities

All Reservoirs

- Highest geothermal potential in Upper Rhine Graben (URG) due to high transmissivities and high temperatures
- Highest potentials are predicted with the higher temperatures from the conductive model (shown above)
- Coupled models show strong potential localization to convective upwelling but in general lower potentials due to forced convective cooling

Take Home Message

- Areas with geothermal potential for heat supply for both model areas predicted
- Regional geologic trends (depth, thickness) govern distribution of geothermal potential for the different reservoirs
- Tool most powerful for estimating trends in utilizable heating power and identifying promising regions
 - Geothermal potential distribution highly dependent on reservoir geometries, physical properties and the connected temperatures
 - Identified several regions with high geothermal potential Berlin: Tempelhof, Velten; Hesse: Upper Rhine Graben
 - High local (one virtual doublet) and regional cumulative (sum of doublets in promising area) geothermal potential
- Approach is transferrable to other locations and scale independent
- This potential estimation method should not be used as decision making tool for stakeholders but opts at identifying promising regions for more detailed studies
- Next step: Run local utilization scenario in area where high heating power is predicted in transient 3D coupled thermohydraulic simulations

