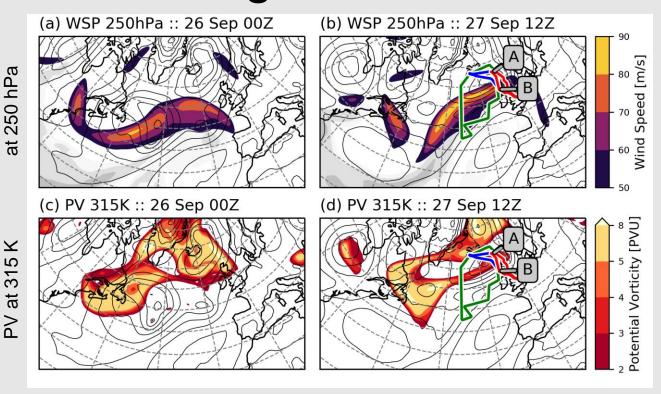


Diabatic Generation of Negative PV and its Impact on the Jet Stream

Ben Harvey, John Methven


Introduction

- Localised regions of negative potential vorticity (PV) are frequently seen on the equatorward flank of the uppertropospheric jet streams in analysis and forecast products
- Their positioning, on the anticyclonic side of the jet and often close to the jet core, suggest they are associated with an enhancement of jet stream maximum winds
- Given that PV is generally positive in the northern hemisphere and is conserved under adiabatic conditions, the presence of negative PV is indicative of recent diabatic activity
- However, little is understood on the mechanisms for its generation and subsequent lifecycle

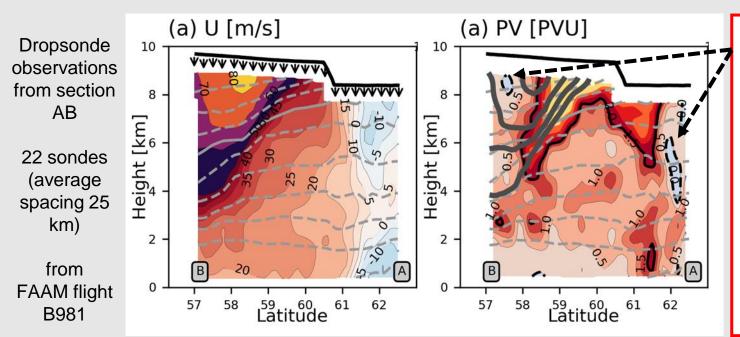
Quick Summary

- We first use aircraft measurements from a recent field campaign to provide direct observational evidence for the presence of negative PV near the jet stream - SLIDE 5
- Theory is then developed to understand the process by which PV can turn negative and the characteristic structure of the resulting PV anomalies – <u>SLIDE 8</u>
- These ideas are illustrated with both a simple idealised model and an operational forecast model with online PV tracer diagnostics – <u>SLIDES 12 & 13</u>

Negative PV: Observations

Wind speed at 250 hPa Case study: NAWDEX IOP4*

Ex-Tropical Storm Karl


- Progressed poleward on 25 Sep
- Interacted with mid-latitude jet stream on 26 Sep
- Generating a strong jet streak to the North of Scotland on 27 Sep

Multiple research flights on 27 Sep [coloured lines in (b) and (d)] – we focus on dropsondes released along section AB

[data = ERA-Interim]

* NAWDEX = North Atlantic Waveguide and Downstream Impacts Expt. (Shäfler 2018, BAMS)

Negative PV: Observations

Negative PV observed at 2 locations Properties:

- Only weakly negative
- Small scale
- Located next to jet max

Computing PV from a dropsonde curtain: Assume zonal symmetry, then Ertel PV is given by: $\rho P = \zeta \cdot \nabla \theta = (f - u_y)\theta_z + u_z\theta_y$

Negative PV: Theory

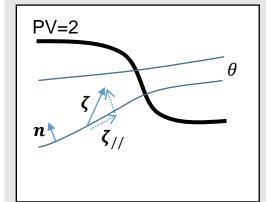
Usual Lagrangian equation for PV (P) in the presence of diabatic heating $(\dot{\theta})$ – following air parcels:

$$\rho \frac{DP}{Dt} = \zeta \cdot \nabla \dot{\theta}$$

INSTEAD, we consider the equivalent equation following isentropic trajectories - the isentropic PV equation:

$$\rho \frac{DP}{Dt} = P\nabla \cdot (\rho \mathbf{u}_D) + \nabla \cdot (\boldsymbol{\zeta}_{//} \dot{\theta})$$

See e.g. Haynes & McIntyre (1990)


Notation

- Normal to θ surfaces: n
- Projection of absolute vorticity onto isentropic surface: ζ = (ζ · n)n + ζ//
- Diabatic mass flux:

$$\rho \boldsymbol{u}_D = \frac{\rho \dot{\theta}}{|\nabla \theta|} \boldsymbol{n}$$

• Isentropic advection:

$$\frac{\widetilde{D}}{Dt} = \frac{\partial}{\partial t} + (\boldsymbol{u} - \boldsymbol{u}_D) \cdot \nabla$$

Negative PV: Theory

At first sight this looks more complex, but the source/sink terms have natural interpretations:

$$\rho \frac{\vec{D}P}{Dt} = P\nabla \cdot (\rho \mathbf{u}_D) + \nabla \cdot (\boldsymbol{\zeta}_{//}\dot{\theta})$$

Dilution/concentration of PV:

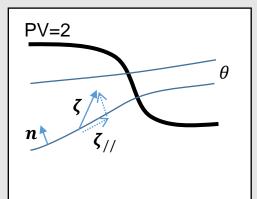
$$\approx P \frac{\partial}{\partial z} \left(\frac{\rho \dot{\theta}}{\theta_z} \right)$$

 Proportional to P, so cannot change its sign

Isentropic flux term:

$$\approx \boldsymbol{k} \cdot \nabla_{\theta} \times (\boldsymbol{v}_z \dot{\theta})$$

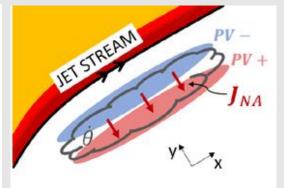
- Requires heating in the presence of vertical wind shear
- From thermal wind balance: flux $\zeta_{//}\dot{\theta}$ is ALWAYS directed down the isentropic slope

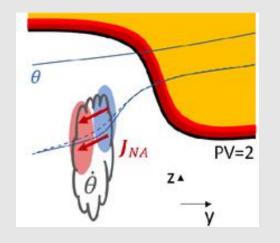

Notation

- Normal to θ surfaces: n
- Projection of absolute vorticity onto isentropic surface: ζ = (ζ · n)n + ζ//
- Diabatic mass flux:

$$\rho \boldsymbol{u}_D = \frac{\rho \dot{\theta}}{|\nabla \theta|} \boldsymbol{n}$$

Isentropic advection:


$$\frac{\widetilde{D}}{Dt} = \frac{\partial}{\partial t} + (\boldsymbol{u} - \boldsymbol{u}_D) \cdot \nabla$$



Negative PV: Theory

So what have we learnt?

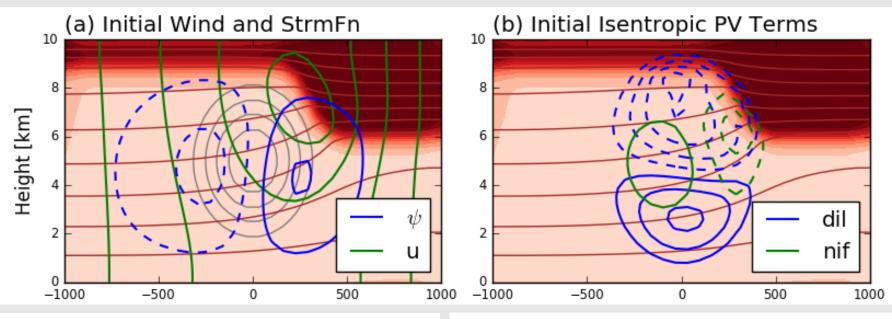
- If negative PV occurs it must be generated by the second term (so requires diabatic heating in the presence of vertical wind shear)
- We can use this to understand its structure. For heating near the jet stream in a warm conveyor belt situation (see schematics):
 - Negative PV will appear on the jet stream side of the heating and above the heating maximum, i.e. strengthening and sharpening the jet
 - Any negative PV must accompanied by an equal positive PV anomaly further down the isentropic slope: the areaaveraged PV cannot change sign

Negative PV: Idealised Model

Next up:

 Use the simplest relevant dynamical model to illustrate the structure of negative PV generated by heating:

2d semi-geostrophic model with heating:

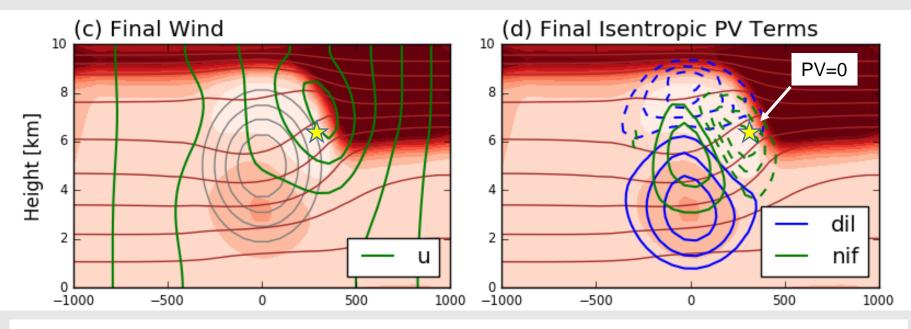

$$\frac{Du}{Dt} - fv = 0 \qquad \frac{D\theta}{Dt} = \dot{\theta}$$

Meridional flow is that which maintains TWB:

$$\psi_{yy}\theta_z + \psi_{yz}(u_z - \theta_y) + \psi_{zz}(f - u_y) = \dot{\theta}_y$$

 Use an initial state with a sloping tropopause and jet stream;
add constant in time Gaussian heating region representing a WCB

Negative PV: Idealised Model



Initial state: Localised jet stream winds (green), heating profile (grey) and induced meridional circulation (blue). Shading shows the PV.

Initial state PV tendency terms: Dilution/concentration (blue) and isentropic flux term (green)

Note: PV tendency is dominated by dilution/concentration, but the isentropic flux term is also present and transports PV down the isentropic slope [see SLIDE 7]

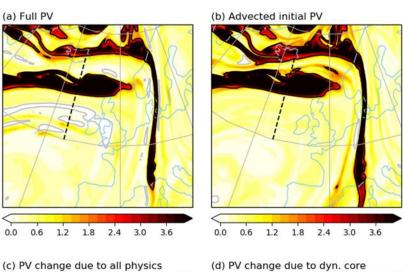
Negative PV: Idealised Model

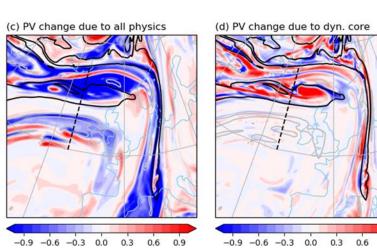
Final state: The model runs until PV turns negative (at the star). The jet has intensified. The PV change is dominated by the dilution/concentration term (-> vertical dipole), but the negative PV first appears on the jet stream side of the heating and above the heating maximum (very near the maximum of the isentropic flux term).

Negative PV: NWP Model

Finally: how did the forecast look in the case study we observed negative PV?

Use MetUM model with 'PV tracers' diagnostics. These allow the PV field to be split as

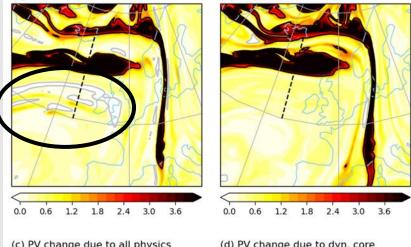

$$P = P_{adv} + \sum_{n} P_{n}$$

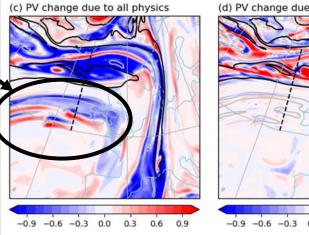

where P_n represents the accumulated PV during a forecast due to

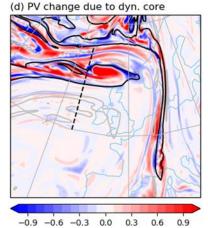
- each physics parametrization
- an estimate of the non-conservation of PV by the dynamical core

NAWDEX IOP4: Ex-Tropical Storm Karl

T+36 forecast valid at 12Z 27 Sep 2016 MetUM: 17km grid




Negative PV is present in quasi-horizontal bands in the region in which it was observed [grey contours show PV=0, black contours show PV=2PVU]


PV tracer diagnostics confirm the negative PV is produced by physics parametrisations in the model (here a combination of convection + large-scale rain schemes) (rather than being an artifact of numerical errors) T+36 forecast valid at 12Z 27 Sep 2016 MetUM: 17km grid level = 8160.1 m

(b) Advected initial PV

(a) Full PV

NAWDEX IOP4: Ex-Tropical Storm Karl

Questions

- What is the fate of negative PV in the atmosphere?
 - How long does it last? How is it destroyed?
 - Can it be observed?
 - Is aggregation of convective-scale features important?
- Do models produce the negative PV realistically?
 - Does it survive for long enough?
 - Is it destroyed in the correct way?
 - Does it matter?!

