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Introduction

» Forests world-wide suffer from different kinds of problems:
» Climate change - storms, droughts, temperature increase
» Insect attacks
» Forest fires
» Monoculture

» How can we evaluate forests/forest problems/future development?

» We need to have a state-of-art forests distribution

» Composition
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Objectives

» Develop an algorithm to classify patches corresponding to tree
species.

» a) Quality of the results obtained with our data

» b) Degree of improvement achieved by Transfer Learning.

» Develop a semantic segmentation algorithm for tree species that is
precise and efficient using three separate algorithmic approaches and
two DL networks.

» Evaluate the applicability of the MLP algorithm: Detection of an
invasive tree species in a coastal forest.




Study area

» Data collected in winter in YURF
(Yamagata University Research
Forest) and in summer in the
coastal forest

» 7 orthomosaics (winter)

» 3 othomosaics of the same site and
on different days (site1)

» 4 orthomosaics of different sites
and on the same day

» 1 orthomosaic (summer)

» Images of dense unmanaged forests




Data

» Classifying patches

» Winter orthomosaic:

» Evergreen, deciduous, river, man-
made and uncovered

» Coastal forest:

» Black locust, other trees (mainly
black pine)
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Methodology

Data collection with UAV

Data processing
» Orthomosaic (Metasape)
» Manual annotations (GIMP)

» Patch annotator

Data classification and
segmentation:

» Architectures: ResNet50 and UNet

» ResNet50: Multi-label patch
classifier
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Experiments

Effect of Transfer Learning on
MLP Classification Accuracy

Dataset Dataset

Winter Classification Winter

Mosaic with ResNet Mosaic

» Random Weights

» Transfer Learning with ImageNet
» Transfer Learning with ImageNet
+ Planet Database

Evaluation: Agreement
Metrics, Sensitivity,
Specificity

Pixel-wise Segmentation:
Evergreen vs. Deciduous

MLP MLP
Classification Classification
with ResNet with ResNet

Watershed
Segmentation

Coarse Refined
Segmentation Segmentation

» 3 experiments were conducted and evaluated

» Classification, segmentation and application

» On different datasets

Semantic
Segmentation
with UNet

Semantic
Segmentation

Evaluation with Dice Coefficent

Applicability of MLP Classification
to Tree Species Detection
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Dataset
Coastal
Forest

Classification
with ResNet

» Transfer Learning with ImageNet

Evaluation: Agreement
Metrics, Sensitivity,
Specificity



Evaluation Methods

MLP Classifier

Predicted
Full Agreement

=
Negatives
- Full Agreement with False Positives
- Partial Agreement
False
Segmentation Positives -
- DICE

Actual

i il TN TP 4+ TN 2TP

SENS = SPEC

p A
TP 4+ FN TN + FP L

DICE

~ TP+ TN + FP + EN ~ 2TP+FP+EN




Experiment 1: Transfer Learning

» Multi-label patch algorithm was used rEffect of Transfer Learning on MLP
» Patch-based approach Classification Accuracy
» 6 different model setups (frozen and
unfrozen) with: % MLP
; o Classification
» Random weights Winter with ResNat

; ; Mosaic
» Transfer learning with ImageNet

» Transfer learning with ImageNet and
Planet Database

» Random Weights

» Transfer Learning with ImageNet
» Evaluation: » Transfer Learning with ImageNet +

: : Planet Database
» Do we increase the accuracy by using

transfer learning on our data?

Evaluation: Agreement,
Sensitivity, Specificity




Transfer Learning

Imagenet

Planet-Database

Our images
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Total Agreement %

Results

» Transfer learning is effective: RANDOM
RN50-F
RN50-UNF

» 12.48 % highest improvement over random weights ANSO 4 PLANET-FF

RN50+PLANET-FUNF

» Unfrozen over frozen RN50-+PLANET-UNFF

RN50+PLANET-UNFUNF

» We only evaluated evergreens vs deciduous

» Highest accuracies reached: 95 %
» Evergreen: 94.75 % Sensitivity; 98.73 % Specificity
» Deciduous: 94.01 % Sensitivity; 90.27 % Specificity

RANDOM

RN50-F

RN50-UNF
RN50+PLANET-FF
RN50+PLANET-FUNF
RN50+PLANET-UNFF
RN50+PLANET-UNFUNF




Experiment 2: Segmentation

Segmentation approach

Coarse segmentation =
classifying/assigning each pixel in a
patch to one class

» Refined segmentation = watershed
helps to differentiate classes in case
that we have more than one class in
a patch

» Semantic segmentation = each pixel
will be labelled and assigned to a
class

Pixel-wise Segmentation:
Evergreen vs. Deciduous

ge e MLP

MLP Semantic
Da'taset Classification Classification Segmentation
Wlnte.r with ResNet with ResNet with UNet
Mosaic
Watershed
Segmentation
Coarse Refined Semantic
Segmentation Segmentation Segmentation

Evaluation with Dice Coefficent
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Experiment 3: Detection of black locust

Applicability of MLP Classification
to Tree Species Detection

Dataset
Coastal
Forest

Classification
with ResNet

» Transfer Learning with ImageNet

Evaluation: Agreement,
Sensitivity, Specificity

Learning Rate: 2e? Learning Rate: 1e* Learning Rate: 2e5
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SENSITIVITY  SPECIFICITY ACCURACY SENSITIVITY SPECIFICITY ACCURACY "~ SENSITIVITY SPECIFICITY ACCURACY

B Black Locust B Other Trees

» Application example: trees with leaves
» Data highly imbalanced - black locust vs black pine 2

also represented in the sensitivity and specificity results
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Discussion

» Forests 2 low amount of images available - transfer learning is the solution

» Evergreen better detected because of their clear boundaries - how about
other tree species (future work)?

» Segmentation methods

» Semantic segmentation (UNet) best for evergreen

» MLP Classifier (ResNet) best for deciduous

» Watershed not necessary and failed with small patch sizes
» Patch size:

» Smaller = higher accuracies but long computing time

» Larger = lower accuracies but short computing time

» Problem: imbalanced data - use of data augmentation in future
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Conclusion

Transfer learning is necessary - 10 % improvement (+further 3%)
Reached high accuracies (nearly 95%)

Use of automatic segmentation methods

vV v v Vv

Application was possible and provided good results

» WE HAVE A METHOD FOR AUTOMATIC CLASSIFICATION AND SEGMENTATION




Thank you for your attention!

For questions please feel free to contact me: sarahkentsch@gmail.com




