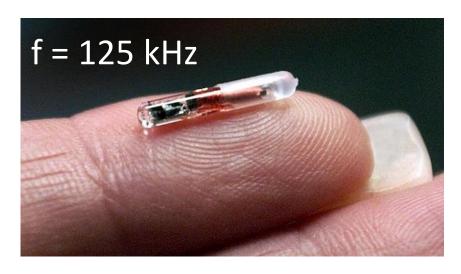

Passive RFID, a new technology for dense and long-term monitoring of unstable structures.

EGU General assembly, May 2020

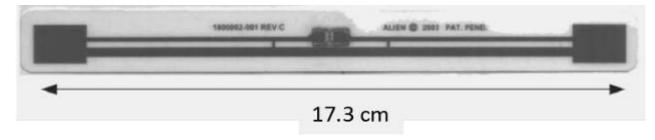
Mathieu Le Breton_{1,2}, Laurent Baillet₂, Éric Larose₂, Etienne Rey₂, Denis Jongmans₂, Fabrice Guyoton₁, and Philippe Benech₃ mathieu.lebreton@geolithe.com

¹Géolithe Innov, Géolithe, Crolles, France ²ISTerre, Université Grenoble Alpes, Grenoble, France ³G2ELab, Université Grenoble Alpes, Grenoble, France


River bedloading

Landslide displacement

Passive RFID technologies in earth science today



Near-field magnetic coupling Tag-reader distance < 0.5 m

Typical applications: contactless payment, personal identification, animal identification

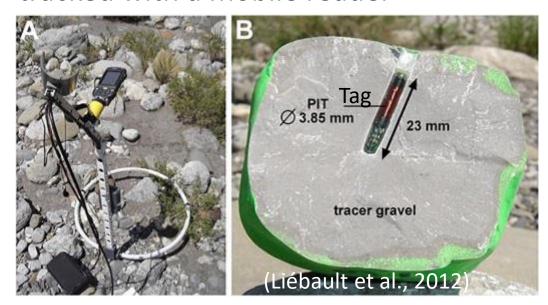
Used to monitor riverine bedload

f=866 MHz

Far-field backscattering
Tag-reader distance 0 to > 10 m

Typical applications: traking goods for logistics, transportation and retail

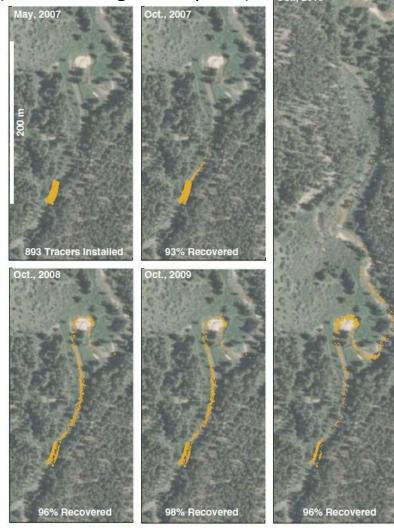
Used to monitor landslide displacements


Why passive RFID tags to monitor the earth surface?

=> Deploy hundreds of low-cost wireless sensors for years

Bedload monitoring (125kHz tags)

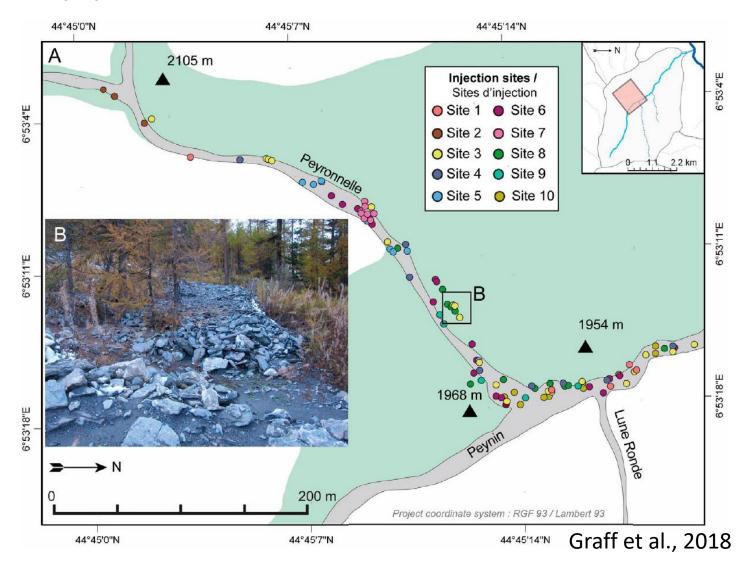
Tags inserted in pebbles and manually tracked with a mobile reader



Mature method, used in 50+ studies. Advantages:

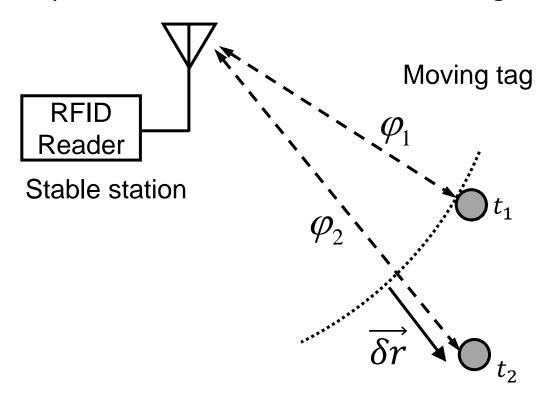
- High recovery rate (vs. paint)
- Identification (vs. magnetic & radioactive tracers)
- Small, cheap, and no battery (vs. radio emiters)

Monitors the riverine bedload of hundreds of pebbles during years


(here 833 tags for 3 years)

(Bradley and Tucker, 2012)

Application to debris flow study (125 kHz tags)

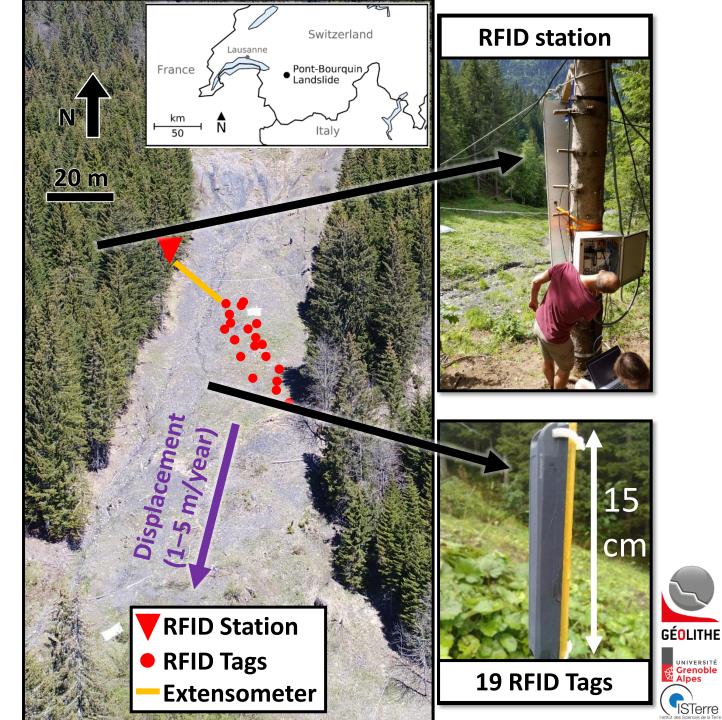


(A) Position of tracked pebbles after being moved by (B) a debris flow in 2015. Each color represent a position where pebbles were initially inserted.

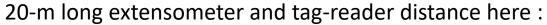
Accurate displacement monitoring using the phase difference (868 MHz tags)

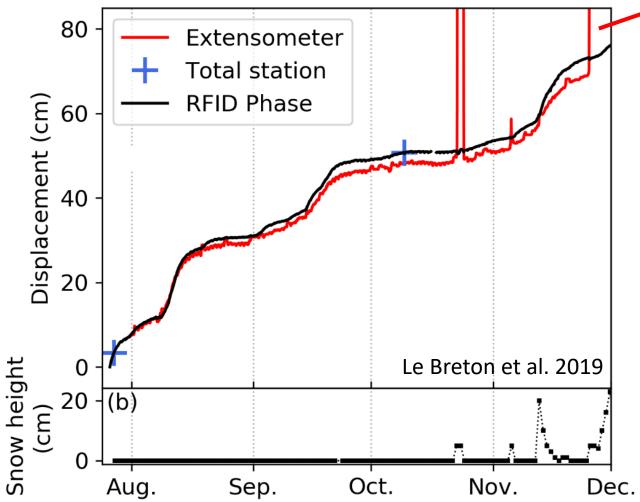
Tags displacement measured by phase variations, with 868 MHz tags

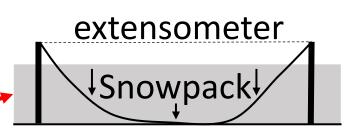
Phase ⇔ Displacement


$$\varphi_2 - \varphi_1 = -\frac{4\pi}{\lambda} \delta r$$

Nikitin et al., 2000



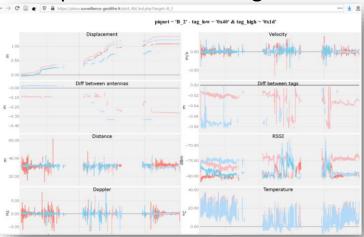

Application of RFID phase-based ranging on a landslide (Pont-Bourquin)


Le Breton et al., 2019

Does it work?

RFID technique

+


More stable than wire extensometer under rain and snow

Cloud software for processing and vizualization

In-depth data for each tag:

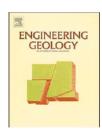
Available today:

- Automatic RFID processing
- Interactive vizualization
- Detailed data for each tag
- Sms/email alert on threshold

Operational on 3 landslides :

- Pont-Bourquin
- Harmalière
- Valloire

Ask me for a demo access


> mathieu.lebreton@geolithe.com

Contents lists available at ScienceDirect

Engineering Geology

journal homepage: www.elsevier.com/locate/enggeo

Passive radio-frequency identification ranging, a dense and weather-robust technique for landslide displacement monitoring

Mathieu Le Breton^{a,b,*}, Laurent Baillet^a, Eric Larose^a, Etienne Rey^{a,b}, Philippe Benech^c, Denis Jongmans^a, Fabrice Guvoton^b, Michel Jabovedoff^d

ARTICLE INFO

Keywords: Wireless sensor network Slope stability Real-time location tracking system Early warning Monitoring Radio-Frequency Identification

ABSTRACT

Ground deformation monitoring at a local scale requires accuracy, along with dense spatio-temporal resolution. Radio-Frequency Identification (RFID) technology is proposed as an alternative to classical geodetic methods for monitoring displacements of a landslide. Passive RFID tags allow for a very dense resolution, both in time and space, at the scale of a 100-m-long surface. By deploying 19 passive RFID tags on a landslide for 5 months, this study validates the technique by comparison with laser total station and wire extensometer data. The accuracy of the RFID technique was 1 cm during normal weather and up to 8 cm during snow events. The results demonstrate that RFID tag tracking can monitor landslide displacements with multiple sensors at low cost, providing dense spatio-temporal data. This technique could potentially be used for other applications such as monitoring volcanic activity, buildings, unstable rocks or snow cover.

Le Breton, M., Baillet, L., Larose, E., Rey, E., Benech, P., Jongmans, D., Guyoton, F., Jaboyedoff, M., 2019. Passive radio-frequency identification ranging, a dense and weather-robust technique for landslide

displacement monitoring. Engineering Geology 250, 1–10. https://doi.org/10.1016/j.enggeo.2018.12.027 © Authors. All rights reserved

For details on the method and perspectives

a Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, 38000 Grenoble, France

^b Géolithe, 38920 Crolles, France

^c Univ. Grenoble Alpes, IMEP-LAHC, 38000 Grenoble, France

d Institute of Geomatics and Risk Analysis, University of Lausanne, 1015 Lausanne, Switzerland