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A-posteriori Analyses of Pattern Recognition Results 
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FP=0% TP=100% FLDA 

Here we use body wave magnitudes – mb -  and surface wave magnitudes - 
MS. Using Fisher’s Discrimination we establish  discrimination thresholds 
learned from examples (F2). 

Discovering all NUKEs (“True positive rate TP”  = 100%) with some false detections of 
NUKE (“false positives” FP). Avoiding FP means that some NUKE is not detected.  

In Geophysics we study pheno- 
mena, such as earthquakes, and 
nuclear tests, i.e., Objects (F1). 
Observables (seismograms) form 
Patterns. Pattern Recognition 
relates patterns to objects, e. g.,  
seismograms to earthquakes or 
nuclear tests. Direct use of 
patterns is often not effective. 
Extracting Features reduces the 
amount of data.  

Input: Autocorrelation functions 

Objects: Stromboli Explosion quakes 
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Output:   Target         Success    Still success  Failure          

The threshold affects the number of true positives (TP) as well as the false 
positives (FP). In Receiver Operation Curves (ROC) we plot TP vs FP rates 
for varying thresholds (F3). The Area Under the ROC (AU) is a general 
parameter for the quality of discrimination (1 for full distinction,  0.5 for 
no distinction).  
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Well separated Poorly separated 

True  | Predicted Class 1 Class 2 Class 3 

Class 1 476 9 6 

Class 2 9 15 8 

Class 3 8 33 46 

The reasoning outlined above also applies to the decision whether to 
take action. In Volcano Monitoring on Mt Etna (F4) we exploit 
unsupervised pattern recognition to identify the unrest of the volcano 
considering seismic stations. We adopt a voting scheme based on the 
number of stations signaling a criticality. Then, we calculate ROC and 
AU. The definition of the threshold to be used remains a task involving 
both researchers as well as end users, who have to decide how many FP 
are tolerable. 

In multiclass problems the classifier learns to assign patterns to 
class A, B, C,…N. The success is assessed from a “confusion” 
matrix, reporting the calculated output of the classifier with 
respect to the target class. The success rate corresponds to the 
sum of matching classifications (diagonal elements in the 
confusion  matrix).  

SiO2 TiO2 Al2O3 CaO MgO MnO K2O Na2O P2O5 Rockname 

6.64E+01 4.75E-01 1.44E+01 1.45E+00 3.00E-01 1.1E-01 5.80E+00 3.55E+00 7.00E-02 RYD 

4.61E+01 2.01E+00 1.63E+01 1.16E+01 5.98E+00 1.6E-01 1.08E+00 2.58E+00 3.20E-01 BAS 

6.84E+01 7.90E-01 1.25E+01 2.13E+00 1.13E+00 1.5E-01 4.37E+00 3.24E+00 1.50E-01 TAN 

6.36E+01 6.20E-01 1.49E+01 3.42E+00 2.89E+00 6.0E-02 4.85E+00 2.27E+00 2.10E-01 DAC 

6.41E+01 6.10E-01 1.65E+01 5.62E+00 2.34E+00 1.3E-01 1.00E+00 4.03E+00 1.50E-01 DAC 

 

The number of matching classifications is a poor measure of 
success when classes are not evenly represented. In F6a - 
classification of infrasound signals – the score is 88%, but 68% can 
be reached just by a random guess. Κ-Statistics allows to assess the 
significance of the classification. Compared to F6a the classification 
of rocks based on the geochemical composition (F6b) is more 
significant. Κ reaches 0.68, higher than the 0.64 in F6a, even 
though the score is only 72 %. As classes are more evenly 
represented, the score of random success is only some 15%.  

Infrasound (Etna) 

Failure of Supervised Learning provides lessons on the problem, analysis for the reasons is 
recommended. One reason of failure is improper definition of targets, e. g., the relation of pat-
terns to objects change with time  making a-priori information obsolete. In F7 we consider the 
geochemical composition of rocks erupted from various eruptive centers on Mt Etna, 
representing it on a Self-Organizing Map. We see that the characteristics of material erupted 
at a certain center changes with time. This turns out applying Unsupervised Learning 
techniques. 

Unsupervised Learning works without a-priori defined targets and is based on metrics 
describing the similarity of patterns among each other. A critical point is the choice of the 
metric, which depends on the user’s ideas. K-means clustering applies the Euclidean metrics 
(see F8a  for the earthquakes-nukes example discussed in F2). In F8b we use a metric which 
accounts for the fact that the features may be correlated – mb and MS are correlated. The 
outcome of the clustering depends on the a-priori chosen metrics.  

A further issue is the choice of the number of clusters. In K-means clustering formal criteria, 
e. g., the Davies Bouldin Index (ratio of between- and within-variance), can be used. The cri- 
teria need a common metric valid for all clusters. This is not always available (e. g.,  corre-
lated features where metrics vary among the clusters (F9a). Density Based Clustering lacks 
such, and centroids are not necessarily valid prototypes (F9b, c). 
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Supervised Learning: Binary Problem : Check TP/FP using ROC & AUC 
 Multiclass Problem: Verify Significance (e. g., Kappa) ! 
 A-priori Choice of Target can be misleading   
Unsuperv. Learning: Data driven and User defined 
 Metric must be defined by User 
 Number of clusters often to be defined a-priori 
 Formal criteria not always applicable 
 Heuristic criteria, a-posteriori analysis on physical meaning 
 

Take Home Message  
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More on this in:  


