

Effect of metal speciation on the oxidative potential and cytotoxicity of airborne particles

<u>Sara D'Aronco</u>^a, Chiara Giorio^a, Federica Chiara^b, Roberta Seraglia^c, Valerio Di Marco^a, and Andrea Tapparo^a

^a Department of Chemical Sciences, University of Padova, Padova, Italy

^b Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy

^c CNR – ICMATE, Padova, Italy

PM_{2.5} Collection and Analysis of Soluble Metals and Anions

Source: Visible Earth NASA

Sampling

Sampling site: Padova, Po Valley

- High load of pollutants
- Fog frequent phenomenon during fall/winter seasons

Sampling Time: 24 hr (2.3 m³/h)

Teflon Filters

Formation of metal-ligand complexes is an important phenomenon in deliquescent aerosol in the urban atmosphere [Scheinhardt *et al.* 2013].

≻ <u>Analysis</u>

PM_{2.5} samples dissolved in water and in solutions simulating fog/rain composition.

Characterization and quantification of soluble metals, organic and inorganic anions.

© Authors. All rights reserved

Identification of Potential Metal-Ligand Complexes in Atmospheric Aqueous

Environments

• Organic ligand concentrations are significantly correlated with the soluble fraction of Fe and Cu

	Succinate	Malonate	Oxalate
Zn _(water)	0.66	0.58	0.50
Zn _(pH 4.5)	0.70	0.60	0.54
Fe (water)	<0.001	<0.001	<0.001
Fe (pH 4.5)	<0.001	<0.001	<0.001
Cu _(water)	<0.05	<0.05	<0.05
Cu _(pH 4.5)	<0.05	<0.05	<0.05

Pearson Correlation *p*-values

• Fe-Oxalate complexes account for nearly 75% of total soluble iron \rightarrow Fe solubility is mainly determined by the ligands contained in PM_{2.5} samples Tapparo *et al.* 2020

© Authors. All rights reserved

Work in progress and future perspectives:

Evaluation if metal speciation impacts on the adverse health effects of PM_{2.5}

> Acellular *in vitro* tests -Glutathione Assay-

Measurement and comparison of the oxidative potential in:

- Equimolar standard solutions of free vs complexed iron/copper
- Extracts of PM_{2.5} samples

> Cellular in vitro tests

Stabilized Epithelial Cell line exposed to solutions containing free vs complexed iron/copper and PM_{2.5} samples:

- Evaluation of cell viability
 - Measurement of intracellular ROS production by
 - 2', 7'- dichlorofluorescin diacetate assay