
LSTM specific
● First application of LSTM to forecast and reconstruct significant wave heights
● LSTM showed slightly better results than linear regression and FFNN, thus the LSTM is proposed
● Improving the way in which the energy density spectrum is pre-processed as input

General
● Complete exclusion of missing values led to the best results
● Model setting IV is proposed for the reconstruction of significant wave height time series
● Possibility to save costs by ending a buoy position and reconstructing the data from neighboring buoys
● Extreme events were consistently underestimated
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Lower Saxony Water Ma-
nagement, Coastal Defence 
and Nature Conservation 
Agency - Coastal Research 
Station 

Position Min [m] Max [m] Mean  [m] Std. [m] Number 

FW  0.088 8.402 1.202 0.765 84 428 

SEE 0.090 6.910 1.072 0.688 95 889 

VST 0.038 3.009 0.626 0.393 88 805 

 

 

Model  

(LinReg /FFNN 

/LSTM) 

Input Output Comment  

I single  

reconstruction  

A(t) B(t) C(t) (2) 

II single  

forecast  

C(t-k)…C(t-1) 

k=48h 

C(t)…C(t+l), l=24h (1) 

III multiple 

timesteps  

reconstruction  

A(t-k)…A(t) B(t-k)…B(t) 

k=8h 

C(t) (2) 

IV multiple 

timesteps  

climate data 

reconstruction  

A(t-k)…A(t) B(t-k)…B(t) 

U(t-k)…U(t) UDir(t-

k)…UDir(t) W(t-k)…W(t), 

k=8h 

C(t) (2) 

V complex  

forecast  

C(t-k)…C(t-1) U(t-

k)…U(t+l) UDir(t-k)… 

UDir(t+l) W(t-k)…W(t+l) 

k=48h 

C(t)…C(t+l), l=24h (1) 

VI climate data 

reconstruction  

U(t-k)…U(t) UDir(t-

k)…UDir(t) W(t-k)…W(t), 

k=8h 

C(t) - 
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(1) Introduction

Christoph Jörges1, Cordula Berkenbrink² and Britta Stumpe1

Wave data prediction and reconstruction by recurrent
neural networks at the nearshore area of Norderney 

(2) Data and Methods

(4) Conclusions

ANNs are a common method to forecast and reconstruct wave heights nowadays. This study shows a new 
approach for significant wave height data measured by buoys in the nearshore area of the Norderney 
coastline. Buoy data of the period 2004 to 2017 from the NLWKN - Coastal Research Station at Norderney 
were used to train three different statistical and machine learning models namely linear regression, 
feed-forward neural network and long short-term memory (LSTM), respectively. Besides calculated sea 
state parameter, an energy density spectrum is being tested as predictor.
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Sea level rise, a possible increase in frequency and intensity of storms and other effects of global warming 
exert pressure on the coastal regions of the North Sea. As well as for building coastal protection or offshore 
structures, detailed knowledge of wave data, especially the wave height, is of particular interest. Therefore, 
the wave climate at the island Norderney is measured by buoys since the early 1990s. Caused by crossing 
ships or weather impacts, these buoys can be damaged, leading to a huge amount of missing data in the time 
series, which are the basis for numerical modelling, statistical analysis and developing coastal protection.

Research Area

 Figure 1: Nearshore area of Norderney with buoy positions.

Buoy Data

► Data available from 2004 to 2017 – with many missing values 
Table 1: Significant wave height statistics.

(3) Results and Discussion
Discussion of Different Models
► LSTM shows the best results for model setup I - IV compared to LinReg and FFNN
► LSTM shows bad results in setup V and satisfactory results in setup VI

Table 3: Comparison of all 18 model results of forecast and reconstruction of significant wave height.

Forecast and Reconstruction of Significant Wave Height
► Handling of missing values has a considerable influence on model quality
► Best results obtained with LSTM in setup IV (RMSE = 0.145 [m], r = 0.983)

Figure 2: Top left: Reconstruction of significant wave height (model IV) for some test data. The LSTM, FFNN and LinReg are compared to the ori-
ginal measured data. Top right: Example of an energy density spectrum at position VST. Bottom left: Loss of the train and test data of model IV 
while the training process. Bottom right: Measured versus predicted significant wave height of LSTM in model IV.
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Methodical Approach

► Parameter Selection
  Input: significant wave height, wind speed/direction,  
    water level
  Output: significant wave height

► Data Preprocessing
  Outlier Detection
  Standardizing
  One-Hot Encoding
  PCA of the energy density spectrum

► Model Development
  Choice of suitable statistical models
  Choice of suitable model parameter (number of
   neurons, epochs, batchsize, etc.)

► Model Training
  Calculation of optimal weights

► Model Validation
  Analysis of RMSE and r of the respective model settings

► Model Discussion
  Comparison of different models (LinReg, FFNN, LSTM)
  Missing values
  Parameter selection
  Variability through parameters vs. variability through
   model selection

Model Setup

Table 2: Six different variations of forecast and reconstruction. A, B and C denote the 
significant wave height at position VST, SEE and FW, respectively. U denotes the wind 
speed, UDir the wind direction and W the water level. (1): Information of same location 
but different times. (2): Information of same time t but different locations.

 

experiment  

method  

available 

data  
training data  test data  

architecture 

([neurons] 

batch size  

epochs)  

test data 

RMSE 

test data 

r 

I LinReg 37 554 27 010 10 544 - 0.202 0.965 

 FFNN 37 554 27 010 10 544 10 64 50 0.194 0.967 

 LSTM 37 554 27 010 10 544 5 64 50 0.190 0.967 

II LinReg 53 093 38 816 14 277 - 0.494 0.982 

 FFNN 53 093 38 816 14 277 10 64 50 0.496 0.986 

 LSTM 53 093 38 816 14 277 [49 49] 64 50 0.493 0.982 

III LinReg 32 729 22 358 10 371 - 0.183 0.969 

 FFNN 32 729 22 358 10 371 10 64 50 0.177 0.970 

 LSTM 32 729 22 358 10 371 [10 10] 64 50 0.176 0.972 

IV LinReg 32 722 22 358 10 364 - 0.151 0.980 

 FFNN 32 722 22 358 10 364 10 64 50 0.146 0.980 

 LSTM 32 722 22 358 10 364 [50 50] 32 50 0.145 0.983 

V LinReg 51 358 37 081 14 277 - 0.281 0.777 

 FFNN 51 358 37 081 14 277 150 32 50 0.333 0.784 

 LSTM 51 358 37 081 14 277 [25 15] 50 100 0.536 0.769 

VI LinReg 82 717 67 726 14 991 - 0.387 0.851 

 FFNN 82 717 67 726 14 991 10 64 50 0.362 0.873 

 LSTM 82 717 67 726 14 991 [10 10] 64 50 0.378 0.858 


