

Global Wave Height Trends and Variability from New Multimission Satellite Altimeter Products, Reanalyses, and Wave Buoys

Ben Timmermans¹, Christine Gommenginger¹, Guillaume Dodet² & Jean-Raymond Bidlot³

¹National Oceanography Centre, UK ²Laboratoire d'Océanographie Physique et Spatial (LOPS), France ³European Centre for Medium-Range Weather Forecasts, UK

ben.timmermans@gmail.com

Outline

- The ESA Sea State CCI+ project & products
- Assessment of CCI+ Sea State v1.1 over the open ocean
 - Global climatologies, seasonal variations, comparisons with other sea state products
 - Comparisons with in situ data and other sea state products
 - Long-term trends in altimeter Hs
- Considerations for analysis in the coastal zone (future work)
- Summary and Conclusions

Results now published in GRL at http://dx.doi.org/10.1029/2019GL086880

Timmermans, Gommenginger, Dodet & Bidlot (2020) Global Wave Height Trends and Variability from New Multimission Satellite Altimeter Products, Reanalyses and Wave Buoys, *GRL*

Geophysical Research Letters

RESEARCH LETTER 10.1029/2019GL086880

R Global Wave Height Trends and Variability from Net Multimission Satellite Altimeter Products, Reanalyses, and Wave Buoys

.

 New multi-mission altimeter products show regional differences in wave height climatologies and trends

Key Points:

B. W. Timmermans¹, C. P. Gommenginger¹, G. Dodet², and J.-R. Bidlot³

National Oceanography Centre

The ESA Sea State CCI+ project

- Funded by the European Space Agency Climate Change
 Initiative+
- 36 months project
 - Lead: Fabrice Ardhuin (Ifremer) / Ellis Ash (SatOC Ltd)
 - Large international team
 - KO: June 2018
- Objectives
 - To produce climate-quality satellite products for Essential Climate Variables (ECV) for Sea State
 - Focus on ensuring long-term consistent multi-mission products, not Cal/Val of individual missions
 - Case studies include trends, extremes, polar & coastal
 - Including, ultimately, trends in extremes at the coast!

Sea State ECV requirements

- ECV defined by WMO Global Climate Observing System (GCOS)
- GCOS formal requirement for Sea State

Product	Frequency	Resolution	Required uncertainty	Required Stability (per decade)
Hs	3-hourly	25 km	10 cm	5 cm

CCI+ Sea State products

- CCI+ Sea State ECVs
 - Altimeter: Hs and Sigma0 (mean square slope)
 - Imaging SAR: Hs, period, direction, 2D spectra
 - 1992-2018
- Strong heritage from GlobWave

- CCI+ Sea State Version 1 products available since July 2019
 - Altimeter Hs only, all missions since 1991 (ERS-1 onwards)
 - <u>https://forms.ifremer.fr/lops-siam/access-to-esa-cci-sea-state-data/</u>
 - Level 2P: along-track products separated per mission and pass (7km)
 - Level 3: edited multi-mission daily products
 - Level 4: multi-mission monthly gridded 1° resolution

CCI+ Sea State v1 altimeter product assessment

Datasets

Altimetry-based her sea state products	Model-based
CCI+ Sea State v1.1 Level 4 altimeter Hs	ERA5 reanalysis
Ribal & Young, 2019: multi-mission altimeter (Hs, U10)	ERA5-hindcast (courtesy Jean Bidlot) – no assimilation

Altimeter Hs climatology

• 1992-2018, 1 deg

National Oceanography Centre

Seasonal variability

• 1992-2017, 1 deg

SH Winter Jul-Sept

Comparisons with other sea state products

- 1992-2017, 4 deg
- % difference in annual climatological mean: CCI - ERA5 (top panel) CCI - RY2019 (bottom panel)

1992-2017 (CCI - ERA5): % diff. in climatological mean

1992-2017 (CCI - RY2019): % diff. in climatological mean

Robustness of difference in climatological mean

5.0

2.5

0.0 -

-2.5

-5.0

- % difference in seasonal climatological mean 10.0 for CCI and RY2019.
- 1992-2017, 2 deg, JFM (panel A) JAS (panel B)
- Statistical significance at 10% marked by dots (via bootstrap of monthly data)
- Cautious interpretation of robustness advised owing to possible systematic errors that remain poorly understood, e.g. stability, continuity and coverage of *in situ* observations from buoys used for calibration.
- Figure S2 (Supporting Information) from *Timmermans et al. (2020)*.

(A) 1992-2017[JFM] (CCI2019 - RY2019): % diff. in climatological mean

(B) 1992-2017[JAS] (CCI2019 - RY2019): % diff. in climatological mean

National Oceanography Centre

- Hs time series at selected buoys
 - NDBC
 - long-term buoy deployments
 - various wave climates
- Inter-comparisons with altimeter, in situ and model products
- 51003 (Hawaii)
- 41002 (W Atlantic)
- 46006 (E Pacific)

- CCI and RY19 show similar variability, occasional biases (± 0.1 m) & negative trends
 - Stronger negative Hs trend in RY2019
- ERA5 and ERA5-h both biased low, with weaker interannual variability
- Note differences in estimated trends for different time periods
 - Trend is opposite over longer period

- CCI and RY19 show similar variability, occasional biases (± 0.1 m) & negative trends
 - Stronger negative Hs trend in RY2019
- ERA5 and ERA5-h both biased low, with weaker interannual variability
- Note differences in estimated trends for different time periods
 - Trend is opposite over longer period

Buoy data from 1985, confirm stronger negative trend seen in RY2019

- Better agreement between all products, particularly towards end of altimeter era
- Trends are broadly consistent between satellite and model products

BUOY data at this site

- Better agreement between all products, particularly towards end of altimeter era
- Trends are broadly consistent between satellite and model products
- Large variability in buoy Hs on seasonal to decadal scales
- Buoy Hs shows opposite (positive) trend!
- But, strong concerns about long-term stability of the BUOY data at this site

Impact of changes in buoy platform/sensor (Gemmrich et al., 2011)

Long-term trends in Hs

CCI+ Sea State: altimeter Hs trends (4 deg grid)

1992-2018 (CCI L4) Mean trend in annual Hs (from linear regression model)

Strong geographical patterns in CCI Hs trend. Grid cells with dots denote 5% trend significance.

National Oceanography Centre

Hs trends in different sea state products (JFM)

(B) CCI2019 [1992-2017]

Timmermans, Gommenginger, Dodet & Bidlot (2020) GRL

Hs trends in different sea state products (JAS)

Timmermans, Gommenginger, Dodet & Bidlot (2020) GRL

Assessment in the coastal zone Outlook & Challenges

- Outlook
 - Extremes; coastal sea state; trends at the coast \Box trends in extremes at the coast
- Challenges
 - Data availability in the coastal zone
 - use dedicated coastal retrackers to minimize data loss at the coast
 - Calibration issues
 - Low sea states in coastal regions
 - Small scale ocean decorrelation
 - retain high-resolution information i.e. no/careful smoothing
 - How to aggregate altimeter data according to sea state scales of variability ?
 - Temporal sampling of extreme events with altimetry ??
 - Validation
 - More in situ networks, but not designed to address climate change problems
 - Etc...

Summary & Conclusions

- ESA CCI+ Sea State project has produced a new multi-mission satellite altimeter products for Hs
- Assessment of CCI Sea State Level 4 gridded products (1992-2018) shows good consistency of Hs climatological fields with Ribal & Young (2019)
 - But ERA5 biased low v CCI Hs
- Inter-comparisons at buoy sites show:
 - Models biased low with weak variability, and sometimes show opposite trends over long/short periods
 - Buoy Hs time series confirm trends in turn for CCI and Ribal & Young (2019)
 - reliability of buoy Hs for climate applications ?
- Global maps of CCI Hs trends show strong spatially coherent patterns
 - E.g. strong positive trends in Atlantic and Southern Ocean, negative trends in Indian Ocean
- Hs trends is different products show similar spatial fingerprints but different magnitudes
 - Ribal & Young (2019) show more strongly negative trends; Reanalyses/hindcasts trends more strongly positive
 - Raises questions about uncertainties and impact of altimeter Hs calibration methodology
- Work just beginning on extreme and coastal sea states
 - Where issues are even more challenging than in the open ocean
- Key results now in GRL at http://dx.doi.org/10.1029/2019GL086880