Nitrogen and phosphorus resorption efficiencies change under drought and shrub encroachment in a Mediterranean ecosystem

Raquel Lobo-do-Vale¹

(raquelvale@isa.ulisboa.pt)

José Rodrigues¹, Joana Martins¹, Simon Haberstroh^{1,2}, Ana Alves¹, Christiane Werner², and Maria Conceição Caldeira¹

¹Forest Research Centre, School of Agriculture, University of Lisbon, Lisbon, Portugal 2Ecosystem Physiology ²University of Freiburg, Freiburg, Germany

Mediterranean ecosystems

Climate change

more frequent and intense droughts

Shrub encroachment

- decrease tree water availability
- affect ecosystem functioning and resilience

Methods

Cork oak woodland in Vila Viçosa, Portugal

- Rain exclusion of 45%
- Shrub removal in control plots
- → 3 blocks, 4 treatments, 36 trees

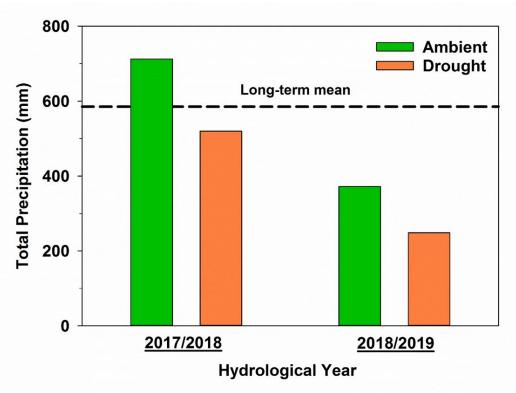
Measurements (2 years):

- Litterfall collection (monthly)
- N and P contents in green ([Ngr]) and senescent ([Nse]) leaves
- Nutrient resorption efficiency:

NRE (%) = ([Ngr]-[Nse])/[Ngr]*100

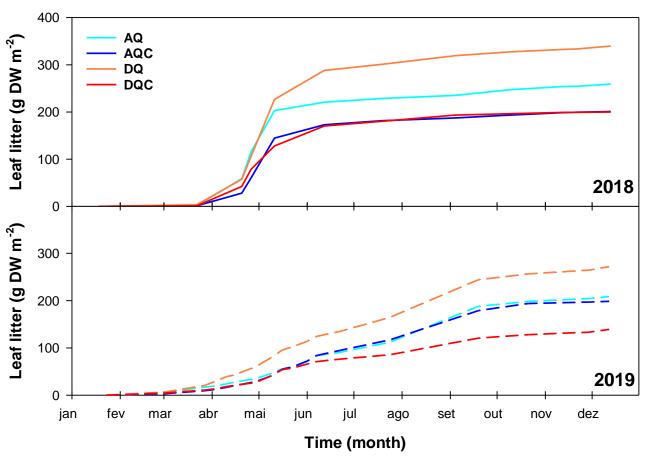
Quercus suber Cistus ladanifer

Ambient


Drought

Quercus suber +

Precipitation and SPEI



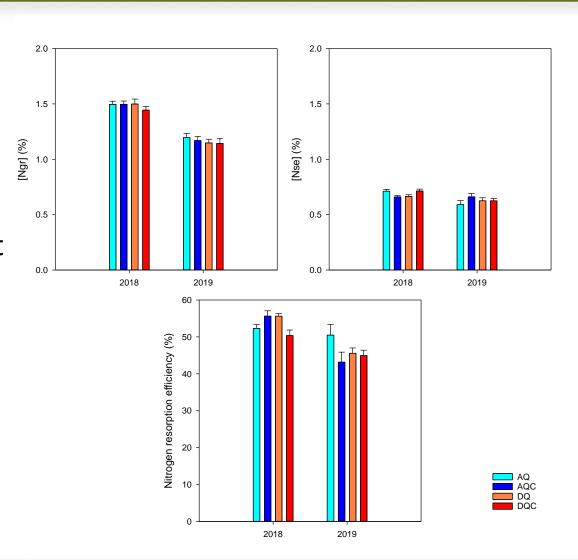
From Haberstroh et al. 2020, this meeting:	
https://presentations.copernicus.org/EGU2020/EGU2020	_
4901 presentation.pdf	

	SPEI_12
Sep2018	-0.12
Sep2019	-1.28

- 2018 was a normal year
- 2019 was a dry year

Leaf litterfall

- Lower leaf litterfall in the dry year (2019)
- Invasion
 significantly
 decreased leaf
 litterfall
- Invasion extended the period of leaf senescence

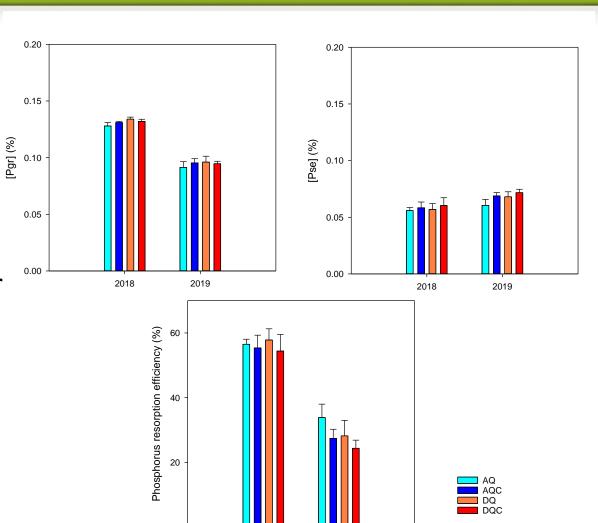


Nitrogen resorption efficiency (NRE)

- Natural drought reduced
 - [Ngr] (-22%)
 - [Nse] (-9%)

→NRE was slightly, but significantly, lower in the dry year (-14%)

 No significant treatment effects were observed



Phosphorus resorption efficiency

 Natural drought reduced [Pgr] (-28%) but [Pse] increased (16%)

→ PRE was highly reduced in the dry year (-49%)

 No significant treatment effects were observed

2018

Preliminary remarks

- The natural drought in 2019 overlapped treatment effects
- The observed decrease in N and P contents in green leaves is likely to reflect a limitation in nutrient uptake by the roots during drought
- The maintenance of the low contents of N and P will lead to a nutritional imbalance, with consequences on the functioning of cork oak woodlands
- Contrary to our expectations, cork oak trees at this site were not able to increase NRE, probably limited by resorption proficiency.
- More data is needed.

Aknowledgements

- Centro de Estudos Florestais/ISA-ULisboa
- Fundação para a Ciência e Tecnologia

Funding:

LISBOA-01-0145-FEDER-030406 - PTDC/ASP-SIL/30406/2017

