

# The architecture of an intrusion in a magmatic mush

Alexandre Carrara<sup>1\*</sup>, Alain Burgisser<sup>1</sup>, George Bergantz<sup>2</sup>

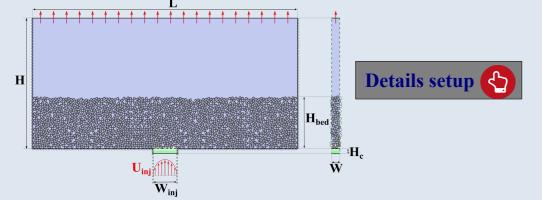


UNIVERSITÉ SAVOIE IONT BLANC

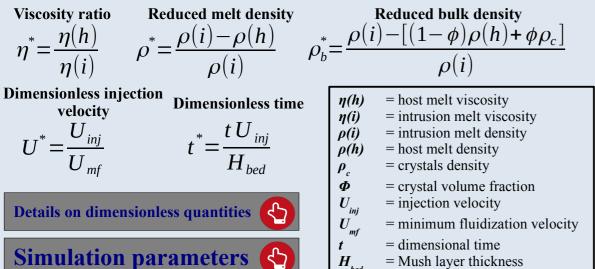
<sup>1</sup> Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, 38000 Grenoble <sup>2</sup> Department of Earth and Space Sciences, Box 351310, University of Washington, Seattle, WA, 98195, USA \* contact : carrara.alexandre.univ@gmail.com

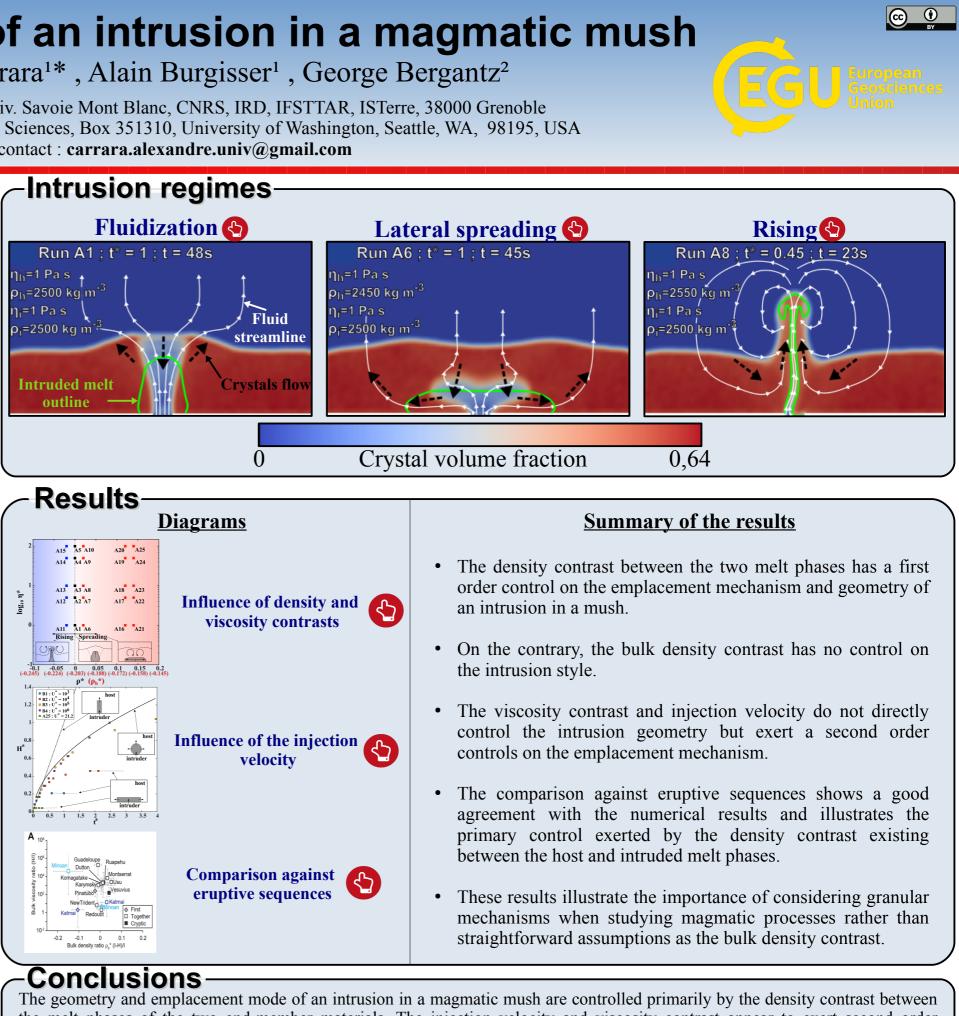
## Introduction

Magmatic reservoirs located in the upper crust have been shown to result from the repeated intrusions of new magmas, and spend much of the time as a crystal-rich mush. The geometry of the intrusion of new magmas may greatly affect the thermal and compositional evolution of the reservoir. Despite advances in our understanding of the physical processes that may occur in a magmatic reservoir, the resulting architecture of the composite system remains poorly constrained.


Here we present numerical simulations to illuminate the geometry and emplacement dynamics of a new intrusion into mush and the relevant physical parameters controlling it.

### Method


We performed CFD-DEM simulations based on MFIX-DEM (https://mfix.netl.doe.gov/) by varying the physical properties (density and viscosity) of host melt and injection velocity. All other parameters were kept constant.


Overview numerical method

The simulation domain is a box filled with a viscous fluid in which a particle bed of thickness is settled to mimic a magmatic mush layer. A melt having different properties than the host one is injected a the base of the tank.



Simulations were compared as a function of the following dimensionless quantities:





the intruded melt is denser than the host one, which results in the emplacement of the intrusion as an horizontal layer. More information at: https://eartharxiv.org/hc4px/ All the numerical simulations presented were performed using the CIMENT infrastructure (https://ciment.ujf-grenoble.fr), which is supported by the Rhône-Alpes region (GRANT CPER07\_13 CIRA: http://www.ci-ra.org). G.W.B. was supported by National Science Foundation grants DGE-1256068, EAR-1049884 and EAR-1447266. Presentation licensed by CC BY (http://creativecommons.org/licenses/by/4.0/)

the melt phases of the two end-member materials. The injection velocity and viscosity contrast appear to exert second order controls. These results illustrate the importance of granular mechanisms in magmatic processes. In most of the natural conditions,

| <b>Back to main slide</b> |  |
|---------------------------|--|
|---------------------------|--|

| Parameter                  | Value or range          |
|----------------------------|-------------------------|
| ρ                          | 3300 kg m-3             |
| dp                         | 4.5-5.5 mm              |
| Nb crystals                | 208495                  |
| <b>H</b> <sub>bed</sub>    | 0.3 m                   |
| W <sub>inj</sub>           | 0.1 m                   |
| $\boldsymbol{\rho}_{m}(i)$ | 2500 kg m <sup>-3</sup> |
| <b>η</b> (i)               | 1 Pa s                  |
| E                          | 2 107 Pa                |
| σ                          | 0.32                    |
| μ                          | 0.3                     |

Table 1: Constant parameters used in the simulations

= Crystal density  $\boldsymbol{\rho}_{c}$ = crystal diameters dp H<sub>bed</sub> = Mesh layer thickness = Injection width W<sub>inj</sub> = melt density in the intrusion ρ (i)

- = Viscosity of the melt phase in the intrusion η (i)
- = Crystal Young modulus E
- = Crystal Poisson coefficient σ = Crystal friction coefficient μ
- = Host meltl density *ρ*(*h*)
- = Bulk density of the host mush  $ho_{b}$  (i)
- $\rho^*$ = Melt reduced density
- $\rho_{b}^{*}$ = Bulk reduced density

 $U_{_{inj}}$ 

- $\eta^* U_{mf}$ = Dimensionless viscosity contrast
  - = Minimum fluidization velocity
    - = Injection velocity

| Run n° | $\rho_m(\mathbf{h})$ | $\rho_{b}(\mathbf{h})$ | ρ*    | $\rho_{_b}$ * | η*  | U <sub>mf</sub> | U <sub>inj</sub> |
|--------|----------------------|------------------------|-------|---------------|-----|-----------------|------------------|
| A1     | 2500                 | 3012                   | 0     | -0.2048       | 1   | 2.956 10-4      | 6.268 10-3       |
| A2     | 2500                 | 3012                   | 0     | -0.2048       | 5   | 5.913 10-5      | 1.254 10-3       |
| A3     | 2500                 | 3012                   | 0     | -0.2048       | 10  | 2.957 10-5      | 6.268 10-4       |
| A4     | 2500                 | 3012                   | 0     | -0.2048       | 50  | 5.913 10-6      | 1.254 10-4       |
| A5     | 2500                 | 3012                   | 0     | -0.2048       | 100 | 2.957 10-6      | 6.268 10-5       |
| A6     | 2450                 | 2994                   | 0.02  | -0.1976       | 1   | 3.141 10-4      | 6.660 10-3       |
| A7     | 2450                 | 2994                   | 0.02  | -0.1976       | 5   | 6.283 10-5      | 1.332 10-3       |
| A8     | 2450                 | 2994                   | 0.02  | -0.1976       | 10  | 3.141 10-5      | 6.660 10-4       |
| A9     | 2450                 | 2994                   | 0.02  | -0.1976       | 50  | 6.283 10-6      | 1.332 10-4       |
| A10    | 2450                 | 2994                   | 0.02  | -0.1976       | 100 | 3.141 10-6      | 6.660 10-5       |
| A11    | 2550                 | 3030                   | -0.02 | -0.212        | 1   | 2.772 10-4      | 5.876 10-3       |
| A12    | 2550                 | 3030                   | -0.02 | -0.212        | 5   | 5.544 10-5      | 1.175 10-3       |
| A13    | 2550                 | 3030                   | -0.02 | -0.212        | 10  | 2.772 10-5      | 5.876 10-4       |
| A14    | 2550                 | 3030                   | -0.02 | -0.212        | 50  | 5.544 10-6      | 1.175 10-4       |
| A15    | 2550                 | 3030                   | -0.02 | -0.212        | 100 | 2.772 10-6      | 5.876 10-5       |
| A16    | 2200                 | 2904                   | 0.12  | -0.1616       | 1   | 4.065 10-4      | 8.618 10-3       |
| A17    | 2200                 | 2904                   | 0.12  | -0.1616       | 5   | 8.130 10-5      | 1.724 10-3       |
| A18    | 2200                 | 2904                   | 0.12  | -0.1616       | 10  | 4.065 10-5      | 8.618 10-4       |
| A19    | 2200                 | 2904                   | 0.12  | -0.1616       | 50  | 8.130 10-6      | 1.724 10-4       |
| A20    | 2200                 | 2904                   | 0.12  | -0.1616       | 100 | 4.065 10-6      | 8.618 10-5       |
| A21    | 2150                 | 2886                   | 0.14  | -0.1544       | 1   | 4.250 10-4      | 9.010 10-3       |
| A22    | 2150                 | 2886                   | 0.14  | -0.1544       | 5   | 8.500 10-4      | 1.802 10-3       |
| A23    | 2150                 | 2886                   | 0.14  | -0.1544       | 10  | 4.250 10-5      | 9.010 10-4       |
| A24    | 2150                 | 2886                   | 0.14  | -0.1544       | 50  | 8.500 10-6      | 1.802 10-4       |
| A25    | 2150                 | 2886                   | 0.14  | -0.1544       | 100 | 4.250 10-6      | 9.010 10-5       |
| B1     | 2150                 | 2886                   | 0.14  | -0.1544       | 100 | 4.250 10-6      | 4.250 10-3       |
| B2     | 2150                 | 2886                   | 0.14  | -0.1544       | 100 | 4.250 10-6      | 4.250 10-2       |
| B3     | 2150                 | 2886                   | 0.14  | -0.1544       | 100 | 4.250 10-6      | 4.250 10-1       |
| B4     | 2150                 | 2886                   | 0.14  | -0.1544       | 100 | 4.250 10-6      | 4.250 100        |

Table 2: Variable parameters used in the set of simulations. Simulation labeled with A explore the importance of the density and viscosity contrasts. Simulation labeled with B explore the influence of the injection velocity.

|   |   | 1 |   |
|---|---|---|---|
| R | 9 | 0 | Z |
|   | a |   |   |
|   |   |   |   |

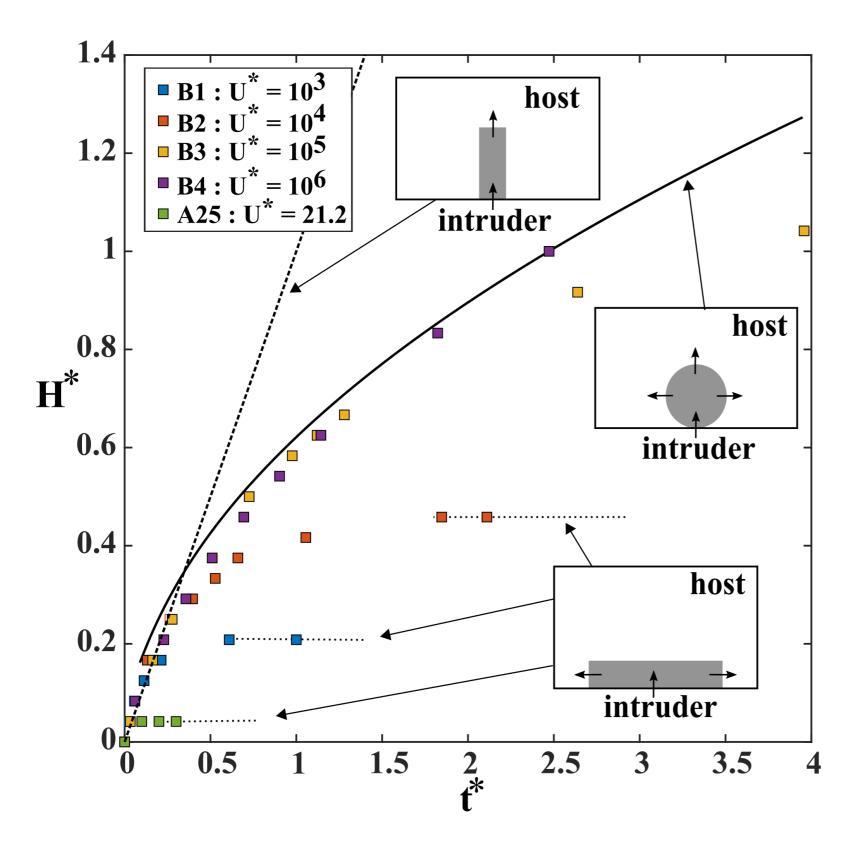
| Parameter        | Value or range          |
|------------------|-------------------------|
| ρ                | 3300 kg m <sup>-3</sup> |
| dp               | 4.5-5.5 mm              |
| Nb crystals      | 208495                  |
| H <sub>bed</sub> | 0.3 m                   |
| W <sub>inj</sub> | 0.1 m                   |
| $\rho_m(i)$      | 2500 kg m <sup>-3</sup> |
| <b>η</b> (i)     | 1 Pa s                  |
| E                | 2 107 Pa                |
| σ                | 0.32                    |
| μ                | 0.3                     |

 
 Table 1: Constant parameters used in the
 simulations

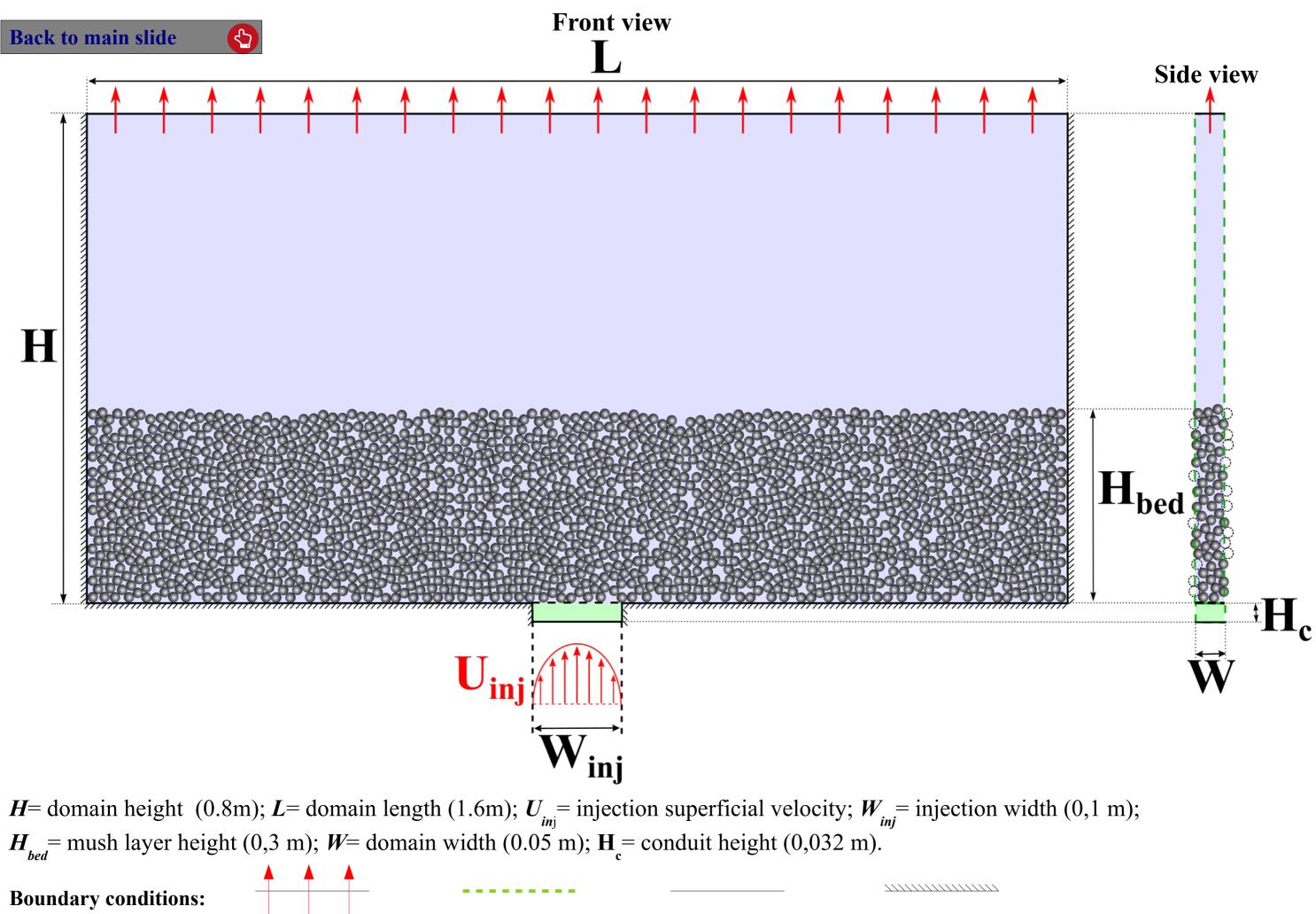
= Crystal density  $\boldsymbol{\rho}_{c}$ = crystal diameters dp H<sub>bed</sub>

- = Mesh layer thickness = Injection width W<sub>inj</sub> = melt density in the intrusion ρ (i) = Viscosity of the melt phase in the intrusion η (i)
- = Crystal Young modulus E
- = Crystal Poisson coefficient σ
- = Crystal friction coefficient μ
- = Host meltl density ρ (h)
- $\rho_{b}(i)$ = Bulk density of the host mush
- $\rho^*$ = Melt reduced density
- $\rho_{b}^{*}$ = Bulk reduced density

 $U_{_{inj}}$ 


- $\eta^*$  $U_{mf}$ = Dimensionless viscosity contrast
  - = Minimum fluidization velocity
    - = Injection velocity

| Run n° | $\rho_m(\mathbf{h})$ | $\rho_{b}(\mathbf{h})$ | ρ*    | $\rho_{_b}{}^*$ | η*  | U <sub>mf</sub> | U <sub>inj</sub> |
|--------|----------------------|------------------------|-------|-----------------|-----|-----------------|------------------|
| A1     | 2500                 | 3012                   | 0     | -0.2048         | 1   | 2.956 10-4      | 6.268 10-3       |
| A2     | 2500                 | 3012                   | 0     | -0.2048         | 5   | 5.913 10-5      | 1.254 10-3       |
| A3     | 2500                 | 3012                   | 0     | -0.2048         | 10  | 2.957 10-5      | 6.268 10-4       |
| A4     | 2500                 | 3012                   | 0     | -0.2048         | 50  | 5.913 10-6      | 1.254 10-4       |
| A5     | 2500                 | 3012                   | 0     | -0.2048         | 100 | 2.957 10-6      | 6.268 10-5       |
| A6     | 2450                 | 2994                   | 0.02  | -0.1976         | 1   | 3.141 10-4      | 6.660 10-3       |
| A7     | 2450                 | 2994                   | 0.02  | -0.1976         | 5   | 6.283 10-5      | 1.332 10-3       |
| A8     | 2450                 | 2994                   | 0.02  | -0.1976         | 10  | 3.141 10-5      | 6.660 10-4       |
| A9     | 2450                 | 2994                   | 0.02  | -0.1976         | 50  | 6.283 10-6      | 1.332 10-4       |
| A10    | 2450                 | 2994                   | 0.02  | -0.1976         | 100 | 3.141 10-6      | 6.660 10-5       |
| A11    | 2550                 | 3030                   | -0.02 | -0.212          | 1   | 2.772 10-4      | 5.876 10-3       |
| A12    | 2550                 | 3030                   | -0.02 | -0.212          | 5   | 5.544 10-5      | 1.175 10-3       |
| A13    | 2550                 | 3030                   | -0.02 | -0.212          | 10  | 2.772 10-5      | 5.876 10-4       |
| A14    | 2550                 | 3030                   | -0.02 | -0.212          | 50  | 5.544 10-6      | 1.175 10-4       |
| A15    | 2550                 | 3030                   | -0.02 | -0.212          | 100 | 2.772 10-6      | 5.876 10-5       |
| A16    | 2200                 | 2904                   | 0.12  | -0.1616         | 1   | 4.065 10-4      | 8.618 10-3       |
| A17    | 2200                 | 2904                   | 0.12  | -0.1616         | 5   | 8.130 10-5      | 1.724 10-3       |
| A18    | 2200                 | 2904                   | 0.12  | -0.1616         | 10  | 4.065 10-5      | 8.618 10-4       |
| A19    | 2200                 | 2904                   | 0.12  | -0.1616         | 50  | 8.130 10-6      | 1.724 10-4       |
| A20    | 2200                 | 2904                   | 0.12  | -0.1616         | 100 | 4.065 10-6      | 8.618 10-5       |
| A21    | 2150                 | 2886                   | 0.14  | -0.1544         | 1   | 4.250 10-4      | 9.010 10-3       |
| A22    | 2150                 | 2886                   | 0.14  | -0.1544         | 5   | 8.500 10-4      | 1.802 10-3       |
| A23    | 2150                 | 2886                   | 0.14  | -0.1544         | 10  | 4.250 10-5      | 9.010 10-4       |
| A24    | 2150                 | 2886                   | 0.14  | -0.1544         | 50  | 8.500 10-6      | 1.802 10-4       |
| A25    | 2150                 | 2886                   | 0.14  | -0.1544         | 100 | 4.250 10-6      | 9.010 10-5       |

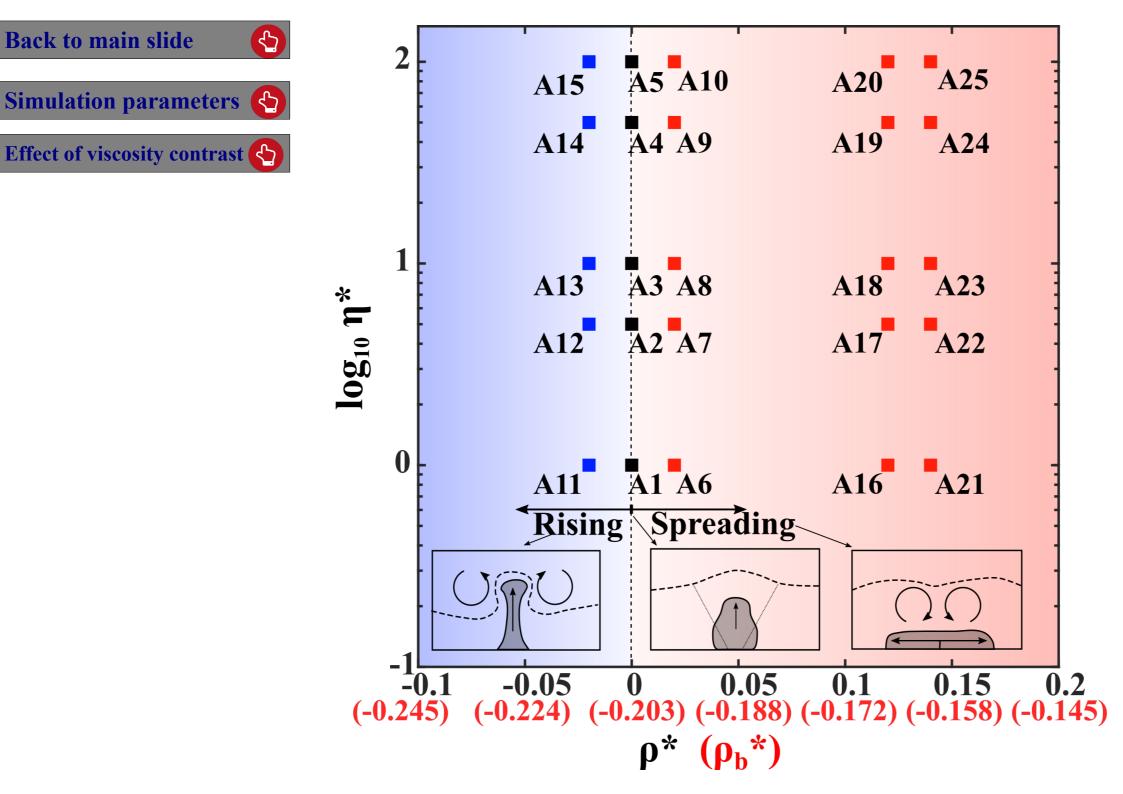

Table 2: Variable parameters used in the set of simulations exploring the influence of the density and viscosity contrasts between the mush and the intrusion

**Back to main slide** 

#### 



Effect of the injection velocity: Comparison of the maximum height of the intrusion as a function of the dimensionless time. The maximum height is normalized by the initial mush layer thickness  $(H^* = H_{max}/H_{bed})$ . Each square represents the measured height of the intrusion in the simulation. Their colors depend on the injection velocities. All simulations uses the same density and viscosity contrasts, taken from simulation A25. For these conditions, the intruder is expected to emplace as an horizontal layer. The dashed, solid, and dotted curves represent the theoretical height of the intrusion for a vertical growth, a radial growth and a lateralteral spreading, respectively




Pressure outflow

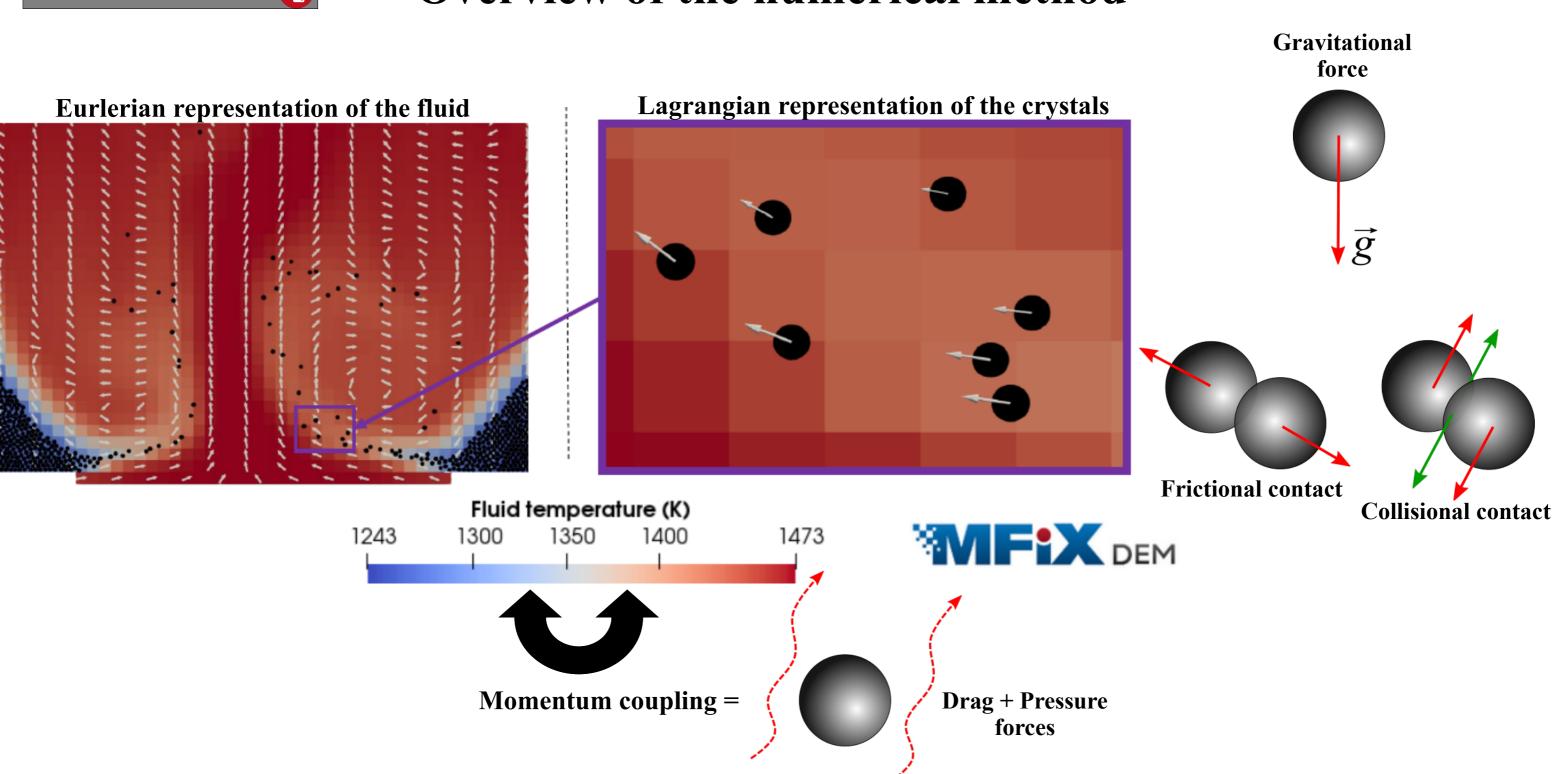
Cyclical

Mass inflow

Non slip wall

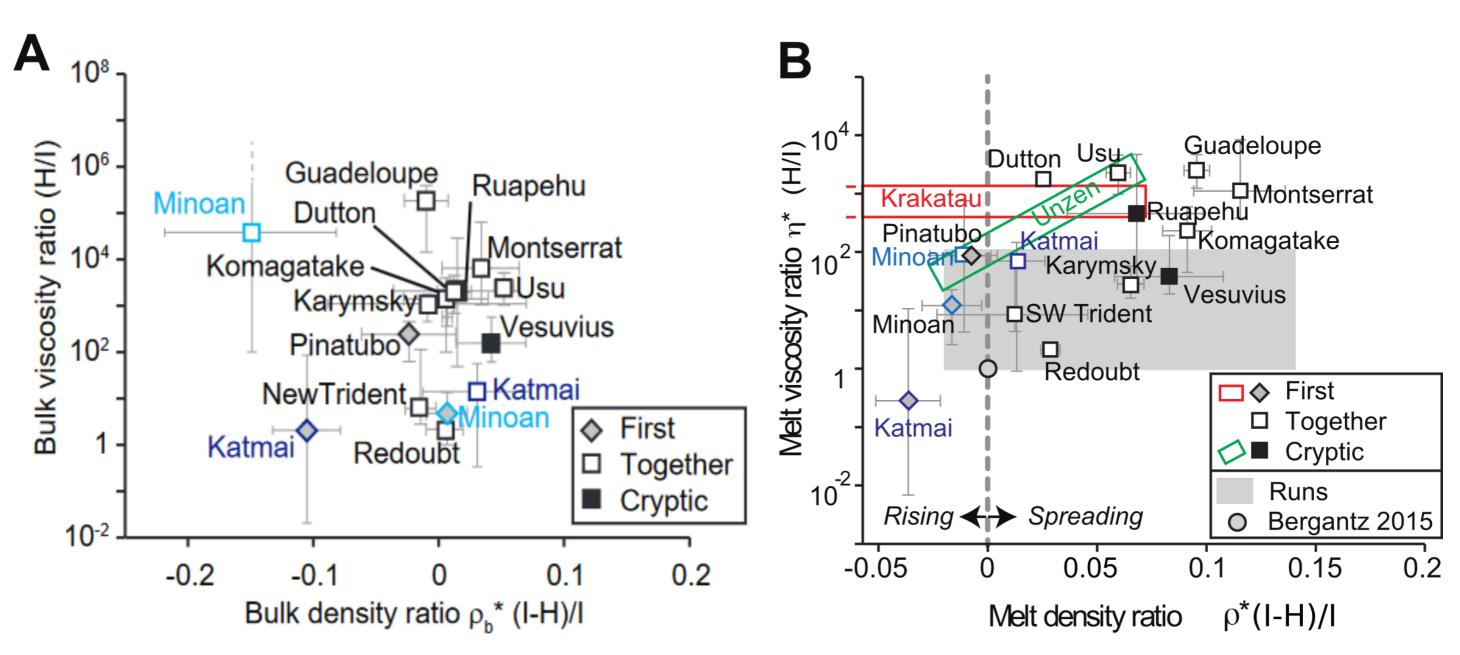


Influence of the density and viscosity contrasts (U\*=22.1): Each square represents a simulation. The red, blue and black colors indicate the occurrence of the lateral spreading, rising, and fluidization regimes, respectively On the abscissa, the coordinates in black are for the melt reduced density and the red ones for the reduced bulk density.


 $\eta^*$  viscosity contrast;  $\rho^*$  reduced melt density;  $\rho_{\mu}^*$  reduced bulk density

Back to main slide

**Simulation parameters** 


## <del>ک</del>

# **Overview of the numerical method**



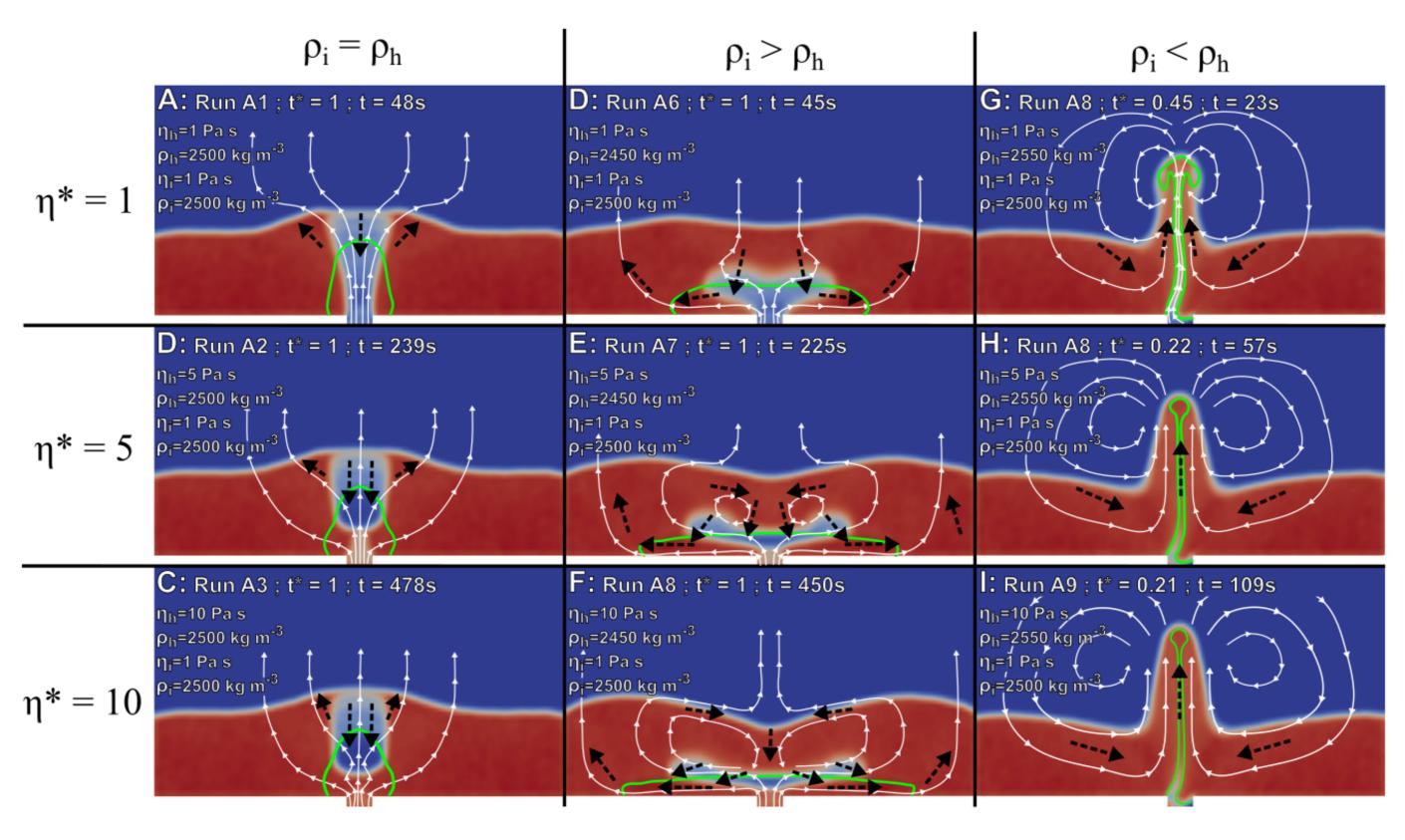
We used an Eulerian-Lagrangian numerical model. For the fluid, the Navier-Stokes equations are solved (energy equation is neglected here) using a finite volume method. For each particle, the Newton's second law is solved to compute its motion with the external forces applied to it. We considered the gravitational, collisional, frictional, drag, and pressure forces. The two phases are four way coupled, meaning that they can exchange momentum through the drag force. Details of the model and equations can be found in Garg et al. (2012), Syamlal (1998), Syamlal et al. (1993).

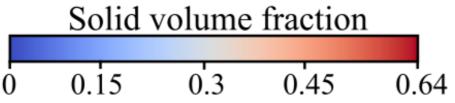
<del>ر</del>ک



**Comparison with eruptive sequences:** [A] Ratios of bulk properties for the host and intruder magmas involved in 15 eruptions. The bulk viscosity ratio is that of the host over that of the intruder and the bulk density ratio is that of the difference between the intruder and the host over that of the intruder. Eruptions are sorted according to whether the intruder magma was erupted first ("First"), at the same time as (or mixed with) the host ("Together"), or fully mixed with the host ("Cryptic"). [B] Ratios of melt properties for the host and intruder magmas involved in 15 eruptions. The melt viscosity ratio is that of the host over that of the intruder and the melt density ratio is that of the difference between the intruder and the host over that of the intruder and the melt density ratio is that of the difference between the intruder and the host over that of the intruder and the melt density ratio is that of the difference between the intruder and the host over that of the intruder and the melt density ratio is that of the difference between the intruder and the host over that of the intruder and the melt density ratio is that of the difference between the intruder and the host over that of the intruder and the melt density ratio is that of the difference between the intruder and the host over that of the intruder and the host ("Together"), or fully mixed with the host ("Cryptic"). The gray area covers the runs done in this study and the cross marks the parameters used in the numerical study of Bergantz et al. (2015). See https://eartharxiv.org/hc4px/ for details regarding the special cases of Unzen and Krakatau.




**Back to main slide** Viscosity ratio Ratio of the host and intruded melt dynamic viscosities Comparison of intruded and host melt densities. Negative value indicates that the Reduced melt L intruded melt is buoyant. Positive value indicates that the intruded melt is denser than the host one density  $\rho(i)$ Comparison of intruded and host bulk densities. As the injected  $(i) - [(1 - \phi)
ho(h) + \phi
ho_c]$ magma is crystal-free, we only included the host crystal volume Reduced bulk ( fraction. Negative value indicates that the intruded magma is density buoyant. Positive value indicates that the intruded magma is denser than the host one. Ratio of the injection superficial velocity and minimum fluidization velocity. The minimum **Dimensionless** inj fluidization velocity predicts at which injection rate the crystals starts to be entrained. This injection velocity


**Dimensionless**  
time 
$$t^* = \frac{t U_{in}}{H_{bed}}$$

mush This quantities is useful to scale the volume of intrusion injected in the simulations. Two simulations with the same dimensionless time have the same volume of intruded melt injected.

> $\eta(h) = \text{host melt viscosity}$  $\eta(i)$  = intrusion melt viscosity  $\rho(i)$  = intrusion melt density = host melt density  $\rho(h)$ = crystals density  $\rho_{c}$ = crystal volume fraction Φ = injection velocity  $U_{\cdot}$ = minimum fluidization velocity  $U_{mf}$ = dimensional time  $H_{bed}$  = Mush layer thickness

quantities is useful to scale the stress imposed by the intrusion on the mush layer. Two simulation with the same dimensionless injection velocity have the same stress imposed to the





Back

\$7

|                         |                                                                                                | Parameter                          | Value or         |
|-------------------------|------------------------------------------------------------------------------------------------|------------------------------------|------------------|
|                         |                                                                                                | $\rho_{c}$                         | 3300 kg n        |
|                         |                                                                                                | dp                                 | 4.5-5.5 m        |
|                         |                                                                                                | Nb crystals                        | 208495           |
|                         |                                                                                                | $H_{_{bed}}$                       | 0.3 m            |
|                         |                                                                                                | $W_{_{inj}}$                       | 0.1 m            |
| $\boldsymbol{\rho}_{c}$ | = Crystal density                                                                              | $\boldsymbol{\rho}_{m}(i)$         | 2500 kg r        |
| dp<br>H                 | = crystals diameters<br>= Mesh layer thickness                                                 | <b>η</b> (i)                       | 1 Pa s           |
| bed<br>W                | = Injection width                                                                              | E                                  | 2 107 Pa         |
| inj<br>ρ(i)             | = melt density in the intrusion                                                                | σ                                  | 0.32             |
| μ (i)<br>η (i)          | = Viscosity of the melt phase in the intrusion                                                 | μ                                  | 0.3              |
| Ε<br>σ<br>μ             | = Young modulus crystals<br>= Poisson coefficient crystals<br>= friction coefficients crystals | <b>Table 1:</b> Constarsimulations | nt parameters us |

| $\rho$ (h) = host melt densit | y |
|-------------------------------|---|
|-------------------------------|---|

- $\rho_{b}(i)$   $\rho^{*}$   $\rho_{b}^{*}$ = bulk density of the host mush
  - = melt density contrast
  - = bulk density contrast
    - = dimensionless viscosity contrast
- $\eta^*$  $U_{_{mf}}$ = minimum fluidization velocity
  - = Injection velocity

| Run n° | $\rho_m(\mathbf{h})$ | $\rho_{b}(\mathbf{h})$ | $ ho^*$ | $\rho_{_b}{}^*$ | η*  |
|--------|----------------------|------------------------|---------|-----------------|-----|
| A25    | 2150                 | 2886                   | 0.14    | -0.1544         | 100 |
| B1     | 2150                 | 2886                   | 0.14    | -0.1544         | 100 |
| B2     | 2150                 | 2886                   | 0.14    | -0.1544         | 100 |
| B3     | 2150                 | 2886                   | 0.14    | -0.1544         | 100 |
| B4     | 2150                 | 2886                   | 0.14    | -0.1544         | 100 |

Table 2: Variable parameters used in the set simulations exploring the influence of the density and viscosity contrast between the mush and the intrusion

Back

 $U_{_{inj}}$ 

### €<sup>5</sup>

#### or range

m-3

mm

m-3

used in the

| $U_{_{mf}}$ | $U_{_{inj}}$ |
|-------------|--------------|
| 4.250 10-6  | 9.010 10-5   |
| 4.250 10-6  | 4.250 10-3   |
| 4.250 10-6  | 4.250 10-2   |
| 4.250 10-6  | 4.250 10-1   |
| 4.250 10-6  | 4.250 100    |

| Back                   |                     |                |                          |                                |                                |                         |                                          |               |            |     |
|------------------------|---------------------|----------------|--------------------------|--------------------------------|--------------------------------|-------------------------|------------------------------------------|---------------|------------|-----|
| CASE                   | Name                | Xtal<br>(vol%) | Minerals                 | Melt SiO <sub>2</sub><br>(wt%) | Melt H <sub>2</sub> O<br>(wt%) | Melt density<br>(kg/m³) | Melt viscosity<br>(Pa s)                 | T<br>(°C)     | P<br>(MPa) | Ref |
| Unzen 1991             | Dacite              | 34-35          | Plag (0.8) Cpx (0.2)     | 75                             | 8                              | 2229-2239               | 1.3×104-1.4×104                          | 775           | 300        | 1   |
| Vesuvius -79           | White Pumice        | 31.6-40        | Plag                     | 53-57                          | sat.                           | 2218-2300               | 2.4×10 <sup>3</sup> -3.0×10 <sup>3</sup> | 875-900       | 150 b      | 2   |
| Guadeloupe 1530        | Andesite            | 48.3-57.5      | Plag (0.8) Px (0.2)      | 73-75                          | 5.5-6                          | 2189-2203               | 1.2×104-2.5×104                          | 825-875       | 135-200    | 3   |
| Karymsky 1996          | Andesite            | 25-32          | Plag (0.8) Px (0.2)      | 63                             | sat.                           | 2395-2378 ª             | 8.9×103-13×103 a                         | 1023-<br>1057 | 200 b      | 4   |
| Ruapehu 1995           | Andesite            | 24.5-42        | Plag (0.66) Px<br>(0.33) | 62-70                          | 1-1.5                          | 2380-2438               | 2.9×104-4.7×104                          | 920-1030      | 40         | 5   |
| Katmai 1912 –          | Andesite            | 30-45          | Plag (0.8) Px (0.2)      | 67.6-74                        | usat-sat.                      | 2274-2284               | 1.2×104-1.3×104                          | 920-970       | 75-120     | 6   |
| scenario 1             | Dacite              | 30-45          | Plag (0.8) Px (0.2)      | 79.1                           | usat-sat.                      | 2189-2220               | 2.0×10₅-8.1×10₅                          | 850-910       | 60-25      |     |
| Katmai 1912 –          | Andesite            | 30             | Plag (0.8) Px (0.2)      | 67.6                           | usat.                          | 2274                    | 1.2×104                                  | 920           | 75         | 7   |
| scenario 2             | Rhyolite            | 2              | Plag                     | 77                             | 4                              | 2225                    | 1.7×106                                  | 790           | 40         |     |
| Komagatake 1640        | White Pumice        | 25-43.1        | n.u.                     | 74.7-76.1                      | 3-4                            | 2280-2300               | 4.4×104-2.9×10 <sup>5</sup> a            | 970-980       | n.u.       | 8   |
| Montserrat 1995        | Andesite            | 35-45          | Plag                     | 75-80                          | 4.8                            | 2171-2160               | 3.7×104-8.4×104                          | 835-880       | 105-155    | 9   |
| Redoubt 1990           | Dacite              | 24-32          | Plag                     | 78.5-81                        | 4                              | 2164-2174               | 3.4×104-3.8×104                          | 840-950       | 100        | 10  |
| Krakatau 1883          | White<br>Rhyodacite | 7-15           | Plag                     | 70-74                          | 4                              | 2220-2400               | 3.1×104-3.4×104                          | 880-890       | 100-150    | 11  |
|                        | Gray Dacite         | 4-12           | Plag                     | 66.5-75                        | 4                              | 2190-2200               | 1.3×104-1.4×104                          | 890-913       | 100-150    |     |
| Minoan –<br>scenario 1 | Rhyodacite          | 10-20          | Plag                     | 73.5-74                        | 5-6                            | 2222-2173               | 1.7×104-1.4×105                          | 845-860       | 200-250    | 12  |
| Minoan – scenario<br>2 | Andesite            | 55-100         | Plag (0.8) CPx (0.2)     | 71-77                          | sat. b                         | 2213-2231               | 5.9×105-1.3×107                          | 700-820       | 50         | 13  |
| SW Trident 1953        | Dacite              | 37-39          | Plag (0.8) Px (0.2)      | 75                             | 3.6                            | 2190-2200               | 4.5×104-4.9×104                          | 890           | 90         | 14  |
| Dutton 1989            | Dacite              | 35             | Plag (0.8) OPx (0.2)     | 78                             | sat.                           | 2481-2491               | 1.4×10₅-1.5×10₅                          | 865           | 200 b      | 15  |
| Pinatubo 1991          | White Pumice        | 47             | Plag (0.8) Hb (0.2)      | 76                             | 6-6.5                          | 2166                    | 5.4×104                                  | 750-800       | 155-200    | 16  |
|                        | Tan Pumice          | 15-26          | Plag (0.8) Hb (0.2)      | 73                             | 6-6.5                          | 2194                    | 5.6×104                                  | 750-800       | 155-200    |     |
| Usu 1663               | Silicic magma       | 2.6-5.3        | Plag (0.8) OPx (0.2)     | 74                             | n.u.                           | 2210-2224               | 9.5×10₄-2.6×10₅                          | 750-800       | n.u.       | 17  |

<sup>a</sup> Calculated from bulk values given in the reference(s).

<sup>b</sup> Assumed value.

Rack

<sup>c</sup> References are: 1) Holtz et al. (2005), Vetere et al. (2008)(andesite intruder), Browne et al. (2006)(basalt intruder); 2) Cioni et al. (1995), Scaillet et al. (2008); 3) Pichavant et al. (2018); 4) Izbekov et al. (2002), Izbekov et al. (2004), Eichelberger and Izbekov (2000); 5) Nakagawa et al. (1999), Nakagawa et al. (2002), Kilgour et al. (2013); 6) Eichelberger and Izbekov (2000), Coombs and Gardner (2001); 7) Hammer et al. (2002), Singer et al. (2016); 8) Takahashi and Nakagawa (2013); 9) Barclay et al. (1998), Murphy et al. (2000), Couch et al. (2001), Humphreys et al. (2010), Plail et al. (2018); 10) Wolf and Eichelberger (1997), Nye et al. (1994), Swanson et al. (1994); 11) Camus et al. (1987), Self (1992), Mandeville et al. (1996); 12) Cottrell et al. (1999), Druitt et al. (1999), Cadoux et al. (2014), Flaherty et al. (2018); 13) Druitt (2014); 14) Coombs et al. (2000), Coombs et al. (2002); 15) Miller et al. (1999); 16) Pallister et al. (1992), Pallister et al. (1996), Bernard et al. (1996); 17) Tomiya and Takahashi (2005).