
Transmission electron microscopy (TEM) investigations of (hydrous) chain silicates from the 
lithospheric mantle beneath the Carpathian Pannonian region (CPR)

TEM investigations provide us with new aspects 
on the behaviour of mantle minerals. TEM has 
not been used to study pyroxenes from 
lithospheric mantle xenoliths in the past 
decades.

Through focused ion beam (FIB-SEM) micro 
sampling, a well defined TEM lamella could be 
prepared, which fulfills the challenges of 
orientation (perpendicular to the c axis) the 
pyroxene and finding the interface with the 
amphibole. 

The studied mantle xenoliths were brought to surface in the 
Carpathian Pannonian region (CPR) by the plio-pleistocene 
alkaline basalt volcanism.

The central CPR sample (Tihany), is of lithospherized 
astenospheric origin, the marginal CPR (Perșani) is from a 
metasomatised mantle domain by a downgoing, torn off slab.
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Formation of the studied amphibole lamella is possible through the 
reaction of the trapped fluid and the host clinopyroxene, through 
deformation-induced dislocations (Skrotzki, 2001) and structural 
channels on the amphibole-pyroxene interface (Veblen and 
Buseck, 1981).

▲On the amphibole-pyroxene interface (modeled on picture (b) amphibole: red O atoms, pyroxene: green 
O atoms), only the (010) boundary gives perfect fit. The (100) and (110) boudaries are uneven, favor the 
formation of grain boundary misfit, thus opening structural channels (d) that result in increased diffusion 
rate (Veblen, 1991).
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Tihany: 46.9228°N / 17.87796°E (7.96±0.03 Ma, K/Ar) 
Studied outcrops

Perșani: 45.9521°N / 25.31594°E (1060±10 ka, K/Ar)  
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Amphibole lamellae were not found in the central CPR (Tihany) 
pyroxenes. The nano inclusions and dislocations may indicate the 
preceding state of the ’freshly formed’ lithosphere, where the single 
ribbon amphibole lamella exsolution would take on the scale of 
10 million years (Veblen, 1991).

▼Series of dislocations in clinopyroxene, there is a 
low-angle (<1°, the subtle difference in orientation is 
visible from low angle) grain boundary, which could act 
as a channel for diffusion, promoting the formation of 
hydrous chain silicates (pargasite or biopyriboles).

▲Bright field TEM image of a negative-crystal 
shaped nano inclusion in orthopyroxene with a 
dislocation  in the upper left corner. The dislocations 
can act as diffusion pathways for H O and other fluids 2

(Bakker and Jansen, 1994). There are no variations of 
the crystal chemistry in the crack or in the inclusion as 
traces of former diffusion.
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Methodology Geological background

Pargasite, as a hydrous chain silicate plays a key role in water storage in the 
mantle and its presence causes the rheologic contrast between the 
lithosphere and the asthenosphere (Green et al., 2010; Kovács et al., 2017).
CPR mantle xenoliths contain interstitial and micro lamellar pargasitic 
amphibole.

OBJECTIVE: 
To nd the micro and nano-lamellae of pargasite in CPR mantle xenoliths, 
and constrain their formation via TEM.
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Carpathian-Pannonian region sample location and neogene evolution modified after Seghedi et al., (2011) and Kovács et 
al., (2012). Geochronological data displayed by Wijbrans et al., (2007) and Seghedi et al., (2016)

(110)

(110)

a

c b

(010) connection (100) connection (110) connection

(010)

(100)

b) pyroxene-amphibo le in ter faces 
modeled by Crys ta lMaker™

a) I beam model of the observed pyroxene-amphibole interfaces

c) STEM image of pyroxene-amphibole 
interfaces

d) STEM image of a 
vacancy on px-am interface

▲EDS spectra of Ca-ordered and non-ordered Ca-poor domain in the Tih-0509 orthopyroxene, section is 
perpendicular to c axis. STEM HAADF image and elemental maps form the Ca-ordered domain. Ca ordering is unit cell 
scale (a=18.25 Å). The Ca in orthopyroxene structure controls the substitution of trace elements (Buseck and Veblen, 
1978). Ca ordering can indicate slight Ca enrichment (Boland, 1972) and/or exsolution of Ca-rich lamellae (or 
clinopyroxene exsolution from orthopyroxene) by cooling (Weinbruch et al., 2003).
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ź Central CPR Tihany mantle pyroxenes show features related to a possible amphibole formation, however either the time frame to exsolve 
amphiboles was too narrow, either the decreased  water activity in the post-extensional setting (Patkó et al., 2019) hindered the process. 

CONCLUSIONS:

ź The marginal CPR sample Perșani clinopyroxene shows amphibole lamellae, where the entrapment of a metasomatic fluid inclusion and the 
host-fluid reaction was the possible mechanism of amphibole formation. This is consistent with the findings of Liptai et al., (2019), that the 

pargasitic amphiboles are more abundant on the marginal localities of CPR.
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