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1. Introduction and aims

“ Water level drawdown in the area due to climate
change and additional anthropogenic effects

*¢ Numerous replenishment plans were worked out in the
past decades but using Managed Aquifer Recharge
hasn’t been considered yet

¢+ The aim of this research is to find suitable areas for
MAR and to assess water recharge possibilities in a local
study area
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2. Study area

/

¢ Located in Hungary, in
the Danube-Tisza
Interfluve (DTI)

/

¢ DTl is aridge region, up
to 130 m a.s.l. between b
Danube and Tisza Rivers

¢ The river valleys are
situated at 85-90 m
above sea level

DDM
- 460 m

+  Groundwater monitoring well
c p Country border

m Kiskunsag sand region L 66m

IO 20 km ’ Hydrography

+¢» Alluvial sediments of

Danube and aeolian Location of Hungary (a), the Danube-Tisza Interfluve — DTI

(b), the regional study area - RSA (¢, red rectangle) and the

sands local study area - LSA (c, blue rectangle)
(Fig. 1¢ map modified from Kohan & Szalai, 2014)




2. Study area
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»* Water management problems in the
broader area have been known for
decades

Western Water Supply Plan (
B TR

L)

» One of the most recent plans was to
move water from the Danube Valley
Channel to the center of the ridge,

through existing channels and lakes
(Nagy etal., 2016)

L)

L)

» Too expensive and not effective
enough as the water can easily
infiltrate from the channels and it

L)

would not reach the higher regions in
sufficient amount

L)

* One of the aim of this research is to
find suitable areas for MAR utilisation

)




4. Methods

¢ Suitability mapping (Silva Cisneros, 2019) for the
Western Water Supply Area (Regional Study Area - RSA)

*» Field measurements (Local Study Area - LSA)
¢ ERT and RMT geophysical measurements
¢ Drilling by hand and soil sampling
¢ Water level and water chemical meausements
*+ Laboratory measurements (LSA)
¢ Water chemical measurements
¢ Sieving and elutriation of soil samples

)

* Numerical modeling (LSA, cross section)

L)
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5. Suitability mapping

660000 665000 670000 675000 680000 685000 690000 695000

LEGEND i
Kilometers = X .
- Settlements I 1012 Verygood  ° " 3 6 9 12 N

8-10 Good

EI :I::s to be built 3:2 ,’igf;'?ge Based on Geological ATLAS of the Great Plain (1978)

rrrer Built canals 3 04 “Verypaoe
P % Based on near surface geology and water table
:|1-2 - 20-60  Poor oquier _Clay . . . .
5 B comve B depth (slope is not an important factor in this area)
45 [ ]sand
[s-6 .
o0 ¢ Alocal study area was chosen based on the final
s-v0 Silva Cisneros, 2019 _ N

and Madl-Szényi et al., 2019 suitability map




EOV X [m]

6. Field measurements
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Geophysical measurements (RMT, ERT)
Drilling and soil sampling

Water level and water chemical
measurements
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7. Results of field measurements
E o
Based on ERT and RMT measurements 3 different layers could be g
distinguished: i
1) Upper aquifer: a relatively dry upper layer which is approximately coincident 5 s, <
with the vadose zone (based on the geophysical measurements it can not be SR ERGD WEW G BP0 we
. .. . . EOV Y [m]
dlStlngUIShed unequlvocallY)' @ ERT measurement 4 RMT measurement /A Well A Drilling A Sample from channel
2) Aquitard: a middle layer, with relatively low resistivity, higher clay content.
3) Lower aquifer: a third layer, which is probably more compact and has a lower
hydraulic conductivity, than the upper layer, but still a relatively good aquifer.
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Inverted result of the ERT measurement (ERT 2); RMT measurements (11-7), and the locations of soil samples
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7. Results of field measurements
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8. Numerical modeling

L)

» Possible modeling scenarios
regarding geological build-up

L)

168500

1. Homogeneous, 1-layer model for
only the Upper Aquifer

168000

2. 3-layer model (continuous aquitard
in between)

3. 3-layer model (aquitard in between,
with discontinuities)

EOV X [m]
167500

167000

*» Possible modeling scenarios
regarding MAR methods

1. Infiltration basin

2. Shallow well

3. Deeper well recharging the Lower
Aquifer
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gravel sand silt clay
* 100

s+ Material properties based on laboratory N

20

measurements and geophysical measuments 3“

70

—t

60

/

*» Upper Aquifer: K~ 1e-05 m/s
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s Aquitard: K ~ 1e-06 m/s (Miiller et al. 2008) % |

20
¢ Lower Aquifer: K ~ 5e-06 m/s (Miiller et al. 2008) 10 N
Vertlcal/Horlzontal anlsotropy: 0.1 130.0000 10.0000 1.0000 mm0.1000 0.0100 0.01;10 0.0001
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+» Initial water table specified based on Great Plain Atlas
of Hungary, 1978 and field measurements

10 cm

O/

< Boundary conditions:

% Top boundary: annual recharge of 100 mm/year (Szilagyi et al. 2012)

% Right boundary: no flow (highest elevation)

% Left boundary: outflow based on natural hydraulic gradient: 3.4e-08 m3/s/m?,
3.4e-09 m3/s/m? and 1.8e-09 m3/s/m? for the different layers, respectively

» Bottom boundary: no flow (moderate recharge area, adequate outflow rate is under assessment)

’0

» Transient model: 1 year (300 exponentially increasing time steps)
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Preliminary results of numerical modeling using &g GeoStudio 2019
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Preliminary results of numerical modeling using &g GeoStudio 2019
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9. Conclusions

% The research area can be suitable for using Managed Aquifer Recharge methods

% Possible methods: surface infiltration, shallow wells and deeper wells

% With the modeled infiltration basin, water level can be increased by 0.5 m in 1 year

% Groundwater flow regime can influence MAR possibilites, thus it must be considered

* Local scale solutions could ease the water shortage of this area

Further research aims:

\/

+* Scenario models for different MAR solutions

K/

% A more detailed geological and hydrogeological study in the area = validation of
modeling results

¢ (Rain)water infiltration experiments
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