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Multi- risk assessment: a global motivation

The Sendai Framework for Disaster Risk reduction (2015-2030)
emphasizes the need for improved understanding of disaster
risk in all its dimensions of exposure, vulnerability, and hazard
characteristics, which streamlines the relevance of being able to
construct a holistic but rigorous multi-hazard- risk assessment
framework.

From single-hazard to multi-hazard risk
assessment, including exposure and dynamic
vulnerability, and progressing towards the analysis
of cascading effects: The Cascading Volcanic
hazards example
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Multi- risk assessment:
General framework on Dynamic physical vulnerability

Contributing to the state of the art development:
We are building upon initially proposed theoretical ideas

INPUT
..r:""—'—"“‘n AT, T,

SINGLE DAMAGE

~— s AaEs. A 3
HAZARDS EXPOSURE VULNERABILITY rNAMIC DAMAGE —
VULNERABILITY
{H) {E) ‘W J {DV] {D‘ CUMULATIVE DAMAGE
— A NSNS~ R, ...
[ HIMIMRU) J [ weprsmarui, | [ Cviewep ey || [ eto=soean | F oomrun, |
Zuccaro et al, 2018
q q 0 . e e
The multi- risk assessment should consider the possible hazards and vulnerability Hk Hy
interactions over the very same exposed elements. o
Update
Multi-risk assessment framework comprises both multi-hazard and multi-vulnerability T
concepts (e.g. Carpignano et al., 2009; Garcia-Aristizabal and Marzocchi, 2012a, 2012b; Ei’
Gallina et al, 2016). Under this scope, the multi- risk assessment should consider the
S~
Conversion

% possible hazards and vulnerability interactions over the very same exposed elements. (This work)




D2143 | EGU2020-19861 Langbein et al. (2020)
Multi-risk Scenario approach: Ash-Fall- Lahar example (Cotopaxi volcano)
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Constructing a Dynamic Vulnerability Framework:

ol

Collecting Vulnerability functions
for Ash-Fall- Lahars

Author Type of Geographical area Number of Predominant Intensity [ Physical
Hazardous the fragilities were = damage building measure unit ]
event derived states material (1.m)
Zuccaro and De  Ash Falls Mount Vesuvius 1 Wood RC, Steel A.F Vertical kPa
Gregorio., 2013 (Probability Load
of Failure)
Spence et al., Ash Falls Mount Vesuvius, 1 Wood, RC, Steel Tephra fall kPa
2005 Teide, Soufriere, (Probability Load
Francesao Miguel of Failure)
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Corredor et al, (Probability
2017* of Failure)
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*Torres- Corredor et al, 2017 was further adapted to get 3 damage states and as proof of
concept of the overall multi-state framework

* Zuccaroi et al., 2013
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Processing plug-ins

o

Computing processes

Rapid Remote Visual Screening with a Multi- hazard- building taxonomy

D2143 | EGU2020-19861 Langbein et al. (2020)

Identifying the plausibility of using “foreign” volcanic fragility functions

Building’s structural and non-structural properties on a global scale.

Standard classification system
— Risk-oriented (e.g. EMS-98, Hazus)
— Faceted (e.g. GEMJVZ,O)
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The hazard acting
forces and
intensities are
different, but
some of the
exposed
components
remain the same.

A methodology to
implement
probabilistic

mapping across
different hazard-
dependent building
schemas and
damage states

Mutually
exclusive,
collectively
exhaustive
(MECE) building
classes per
reference hazard
with associated
fragility functions
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(this work)
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Following the damage evolution in a volcanic multi- hazard- risk scenario
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Some Remarks

We have been able to set up a framework for volcanic- multi- hazard, multi- risk damage and multi- risk damage loss assessment. This method
allows to consistently re-use existing single hazard fragility in a multi- risk framework.

It is evident the urgent need of accurate local models and with multi-damage- state functions (not only probability of collapse, such as in most
of the available as-fall fragility functions.

A comprenhensive faceted multi-hazard- building taxonomy is a fundamental piece in this multi- hazard- risk framework. Its implementation to
collect local observations over a selected building simple (through a wise- hazard-focus building sampling) has high relevance in order to
constrain the innitial assumptions on the definition of mutually exclusive, collectively exhaustive (MECE) building classes.

The general assumption of “intact” buildings for which the conventional single- hazard fragility functions are made is questioned and
overcoming this aspect should be a general issue to be addressed by the Multi- hazard- community.

The epistemic uncertainty in the building- portfolio exposure definition, and their link with the spacial hazard intensity distribution plays a
fundamental role in a consistent multi- hazard-risk framework.

Multi-risk vulnerability models have to consider the state dependency in order to model the accumulation of physical damage across a
sequence of (different) natural events.

A common framework across the different natural hazards- risk communities aiming for a harmonized damage- data collection at the building
element level is required to constrain a common baseline in a multi- risk framework.
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From single-hazard to multi-hazard risk assessment, including exposure and dynamic vulnerability, and
progressing towards the analysis of cascading effects

In recent decades, the risk to society due to natural hazards has increased globally. To counteract this trend, effective risk management is
necessary, for which reliable information is essential. Most existing natural hazard and risk information systems address only single
components of a complex risk assessment chain, such as, for instance, focusing on specific hazards or simple loss measures. Complex

interactions, such as cascading effects, are typically not considered, as well as many of the underlying sources of uncertainty. This can lead

The research and development project RIESGOS
(Grant No. 03G0876) is funded by the German Federal A

Ministry of Education and Research (BMBF) as part of .
the funding programme 'CLIENT Il — International WWW Www. rlengS.de
Partnerships for Sustainable Innovations'. U
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