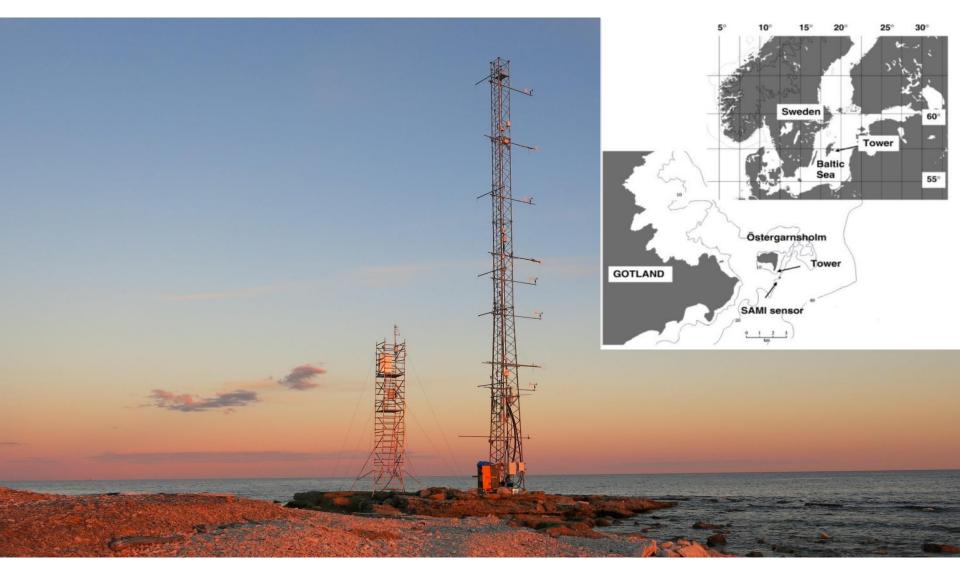
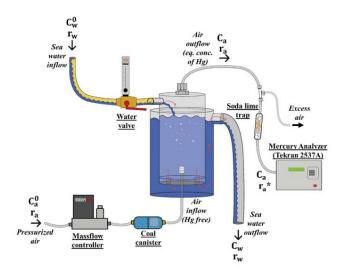


Determination of gaseous elemental mercury air-sea exchange in the Baltic Sea

S. Osterwalder, M. Nerentorp, W. Zhu, E. Nilsson, M. B. Nilsson, A. Rutgersson, A. Soerensen, J. Sommar, M. Wallin, I. Wängberg and K. Bishop



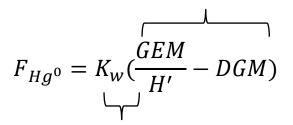
Fonds national suisse Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation


ICOS Östergarnsholm

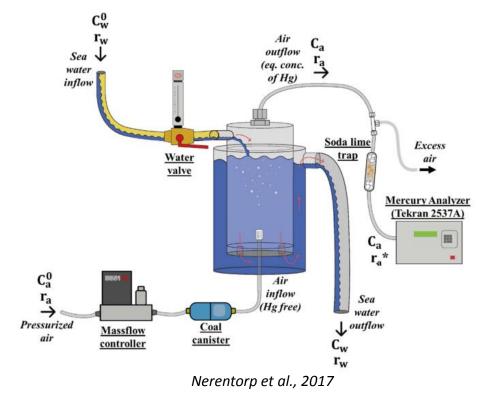
10 May – 20 June, 2017

Objectives

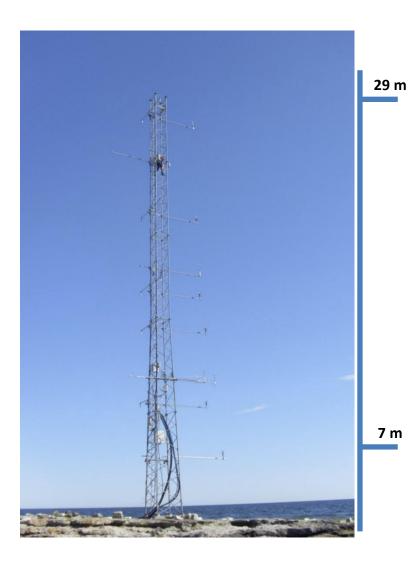
Automatic continuous equilibrium system


Micrometeorological techniques

- (1) Quantify the Hg⁰ air-sea flux using the gas exchange model and micrometeorological methods
- (2) Compare Hg⁰ fluxes from coastal waters and the open sea
- (3) Investigate wind speed dependence of Hg⁰ gas transfer velocity


Gas exchange model

Δ partial pressure Hg⁰



mass transfer velocity between water and air

- C_{DGM}
- Ambient Hg⁰
- Sea surface temperature
- Wind speed
- Atmospheric pressure
- Salinity

Gradient-based methods

Hg⁰ , CO₂ , H₂0, Temp, Humidity, Solar rad.

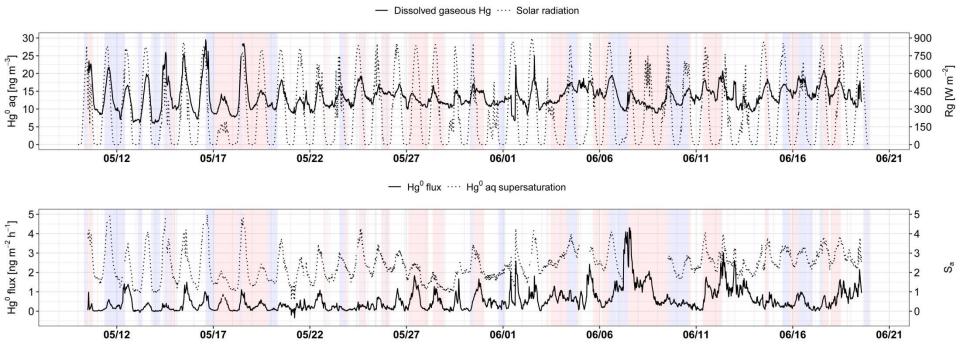
 Hg^0 , CO_2 ,

H₂0, Temp,

Humidity, Solar rad.

 $\mathbf{F}_{Hg^{0}} = -\frac{k \cdot u_{*} \cdot z}{\phi_{h}\left(\frac{Z}{L}\right)} \cdot \frac{\delta \mathbf{c}_{Hg^{0}}}{\delta \mathbf{z}}$

Relaxed Eddy Accumulation (REA)


CSAT3 3-D Sonic at 10 m height

Open-sea sector: 80° < WD < 160° Coastal sector: 160° < WD < 220°

10 m

Hg⁰ flux CO₂ flux Sensible heat flux Water vapour flux Wind vector

Results: Dissolved gaseous Hg⁰ and modeled Hg⁰ flux

blue: open sea conditions for wind direction 80° - 160° red: coastal conditions for wind direction 160° - 220°

Results:

- 1) Hg⁰ flux derived from the model and measurements (mean; 10th and 90th percentile):
- Gas exchange model: 0.6 (0.1 1.3) ng m⁻² h⁻¹
- Aerodynamic gradient: 0.5 (-3.8 5.6) ng m⁻² h⁻¹ (coastal sector)
- Relaxed eddy accumulation: 0.6 (-45 40) ng m⁻² h⁻¹ (coastal sector)
- Hg⁰ emission from open sea sector (mean = 6.3 ng m⁻² h⁻¹) larger than from coastal sector (mean = 0.6 ng m⁻² h⁻¹).
- 3) Micrometeorological measurements indicated a stronger wind speed dependence of the Hg⁰ transfer velocity compared to the Standard Model (Nightingale et al., 2000) which appears to coincide with whitecap formation in the open sea flux footprint (wind speed > 5 m s⁻¹).

References:

- I. Nerentorp Mastromonaco, M.G., Gårdfeldt, K., Wängberg, I., 2017. Seasonal and spatial evasion of mercury from the western Mediterranean Sea. Marine Chemistry, The role of oceans in the global mercury observing systems 193, 34–43.
- II. Nightingale, P.D., Malin, G., Law, C.S., Watson, A.J., Liss, P.S., Liddicoat, M.I., Boutin, J., Upstill-Goddard, R., 2000. In situ evaluation of air-sea gas exchange parameterizations using novel conservative and volatile tracers. *Global Biogeochemical Cycles* 14, 373 387.