Temporal variability of greenhouse gas and reactive gas emission factors during a two-week-long tropical peatland experimental burn

<u>Yuqi Hu</u>¹, T.E.L. Smith², M.A. Santoso¹, H.M.F. Amin¹, E.G. Christensen¹, W. Cui¹, D.M.J. Purnomo¹, P. Pither³, Y.S. Nugroho³, G. Rein¹

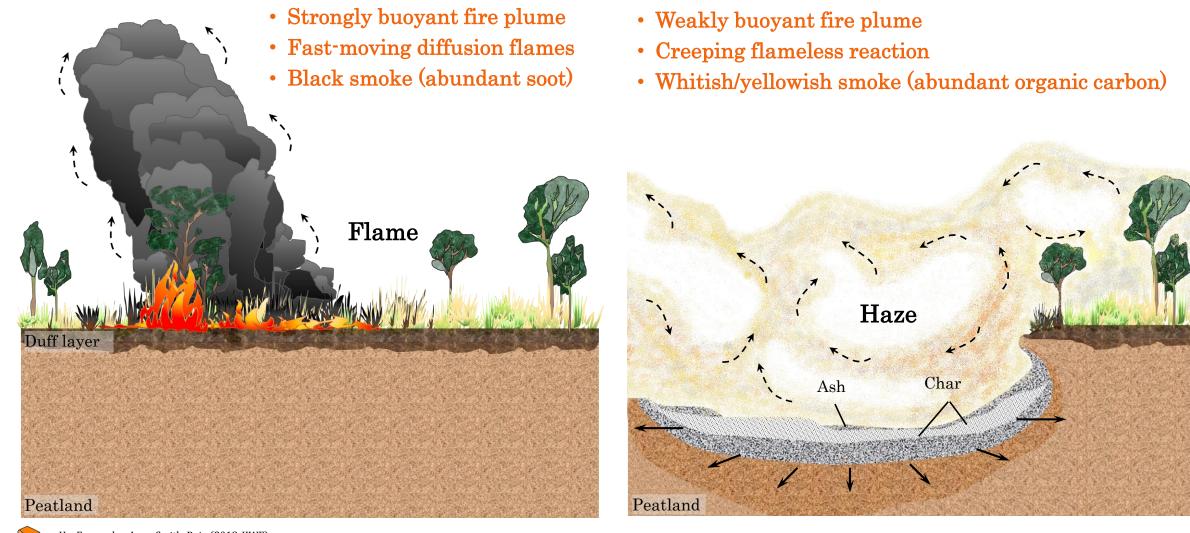
¹ Department of Mechanical Engineering, Imperial College London, UK
² Department of Geography and Environment, London School of Economics and Political Science, UK
³ Department of Mechanical Engineering, Universitas Indonesia, Indonesia

EGU^{General} 2020 EGU2020: Sharing Geoscience Online, May 4-8, 2020

A NASA satellite image showing the extent of the fire smoke in Borneo on 15 Sep 2019



Toxic Haze


(Rayleigh scattering-high concentration of aerosol scattering red light)

"(Our) radiocarbon (¹⁴C) measurements confirm that <u>peat fire</u> <u>emissions</u> were the dominant source of (haze) aerosols..."

Flaming Forest Fire vs. Smouldering Peat Fire

Fire Emission Quantification

GFED3.1 (Global Fire Emission Database) (van der Werf et al. 2010)

"Conventional" Burned Area Approach (Seiler and Crutzen, 1980)

$E_i[g] = A[m^2] * B[kg/m^2] * C[kg/kg] * EF_i[g/kg]$

- E_i: Emission of trace species I
- A: Area burned (MODIS burn scars)
- B: Biomass density (Fuel load) (CASA biogeochemical model with satellite fAPAR data)
- C: Combustion Completeness (CASA biogeochemical model with GPCP precipitation)
- EF_i: Emission Factor for species i

GFAS1.1 (Global Fire Assimilation System) (Kaiser et al., 2012)

FRE-based Combustion Factor (CF) Approach (Wooster et al., 2005))

$E_i [g] = FRE [J] * CF [kg/J] * EF_i [g/kg]$

FRE: Fire Radiative Energy [J](MODIS FRP)(Time Integrated Fire Radiative Power (FRP) [W])CF: Combustion Factor(fuel type dependent CF)EF_i: Emission Factor for species i

Fire Emission Quantification

GFED3.1 (Glo

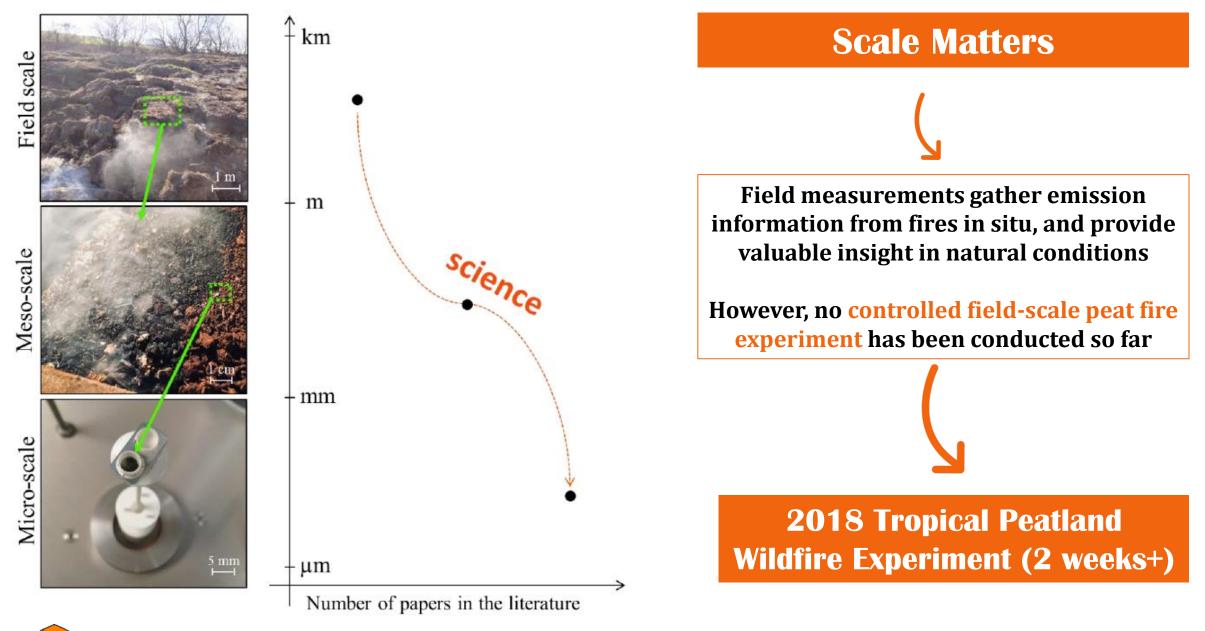
"Conventional" B

- E_i: Emission of trace s
- A: Area burned
- B: Biomass density (F
- C: Combustion Compl
- **EF**_i: **Emission Factor**

Emission Factor (EF, g·kg⁻¹)

mass of species emitted

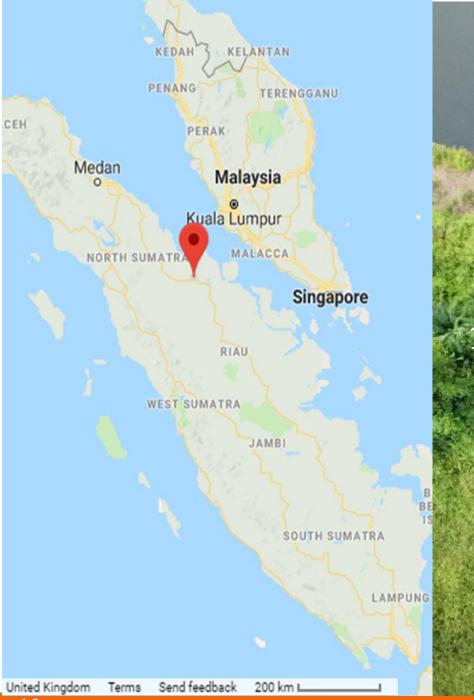
mass of dry fuel consumed


FRE-based Comb

GFAS1.1 (Glo

FRE: Fire Radiative Ene (Time Integrated Fi CF: Combustion Factor **EF_i: Emission Factor** 1 **Atmospheric chemistry modelling**

Carbon budget calculations


E. Christensen et al. Experimental Methods and Scales in Smouldering Wildfires. 2018 Hu, Fernandez-Anez, Smith, Rein, IJWF. 2018

The Largest Controlled Tropical Peatland Wildfire Experiment

The 1st Gambut Workshop: UK-Indonesia Collaboration for Mitigation of Peat Fires

13th August to 3rd September, 2018

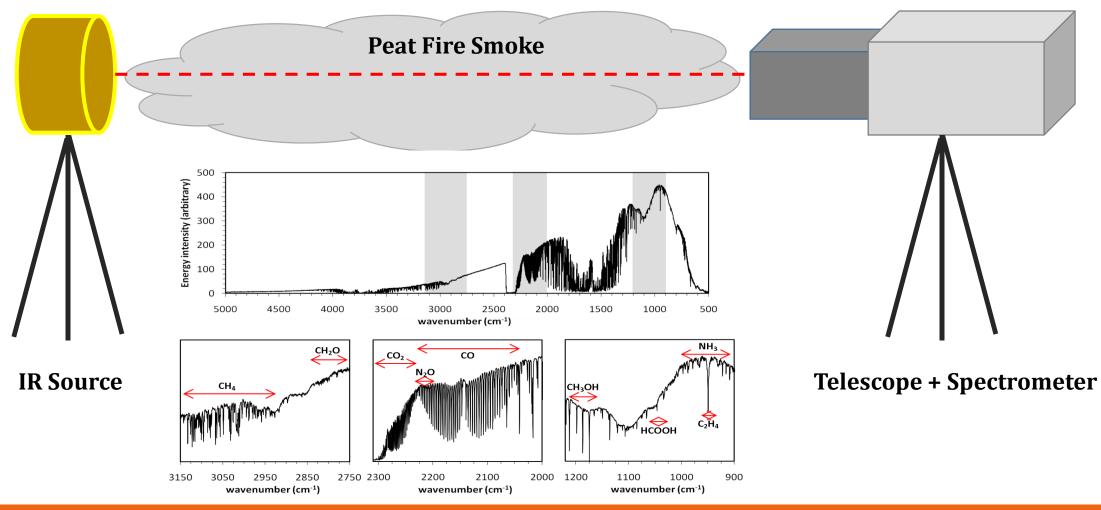


Top View (drone) River 10 m Tent

Yuqi Hu et al. | EGU 2020

10

Life-cycle of emissions from tropical peatland fire



Open-path FTIR

Characterize biomass burning emissions

Path-averaged trace gas mole fractions

Field Measurement

- **IR Source** C_2H_4 CH₂O Telescope + C_2H_2 Spèctrometer CH₄ NH₃ **CH₃COOH CH**₃**OH** C_2H_6 CH₂O₂ **HCN**
- 12 gas species
- Mole fractions μmol mol⁻¹ (ppm)
- Accuracy within 5%

Emission Factor Quantification

Carbon balance approach (Ward and Radke 1993)

$$EF_i = F_c \cdot 1000 \left(g \ kg^{-1}\right) \cdot \frac{MM_i}{12} \cdot \frac{C_i}{C_T}$$

- F_c: Carbon content of the peat
- MM_i: Molar mass of species i
- 12 : The atomic mass of carbon (g mol⁻¹)
- C_i: Number of moles of species I
- C_T: Total number of moles of carbon emitted

$\Delta[i]$ and $\Delta[j]$:	Excess mole fractions of species i and j
NC _i :	Number of carbon atoms in species j;
The sum:	All carbon-containing species emitted by the fire

$$ER_{i/CO} = \frac{[i] - [i]_{backgroud}}{[CO] - [CO]_{backgroud}}$$

$$EF_i = ER_{i/CO} \times \frac{MW_i}{MW_{CO}} \times EF_{CO}$$

 $\begin{array}{r} \mathsf{CH}_4, \mathsf{NH}_3, \mathsf{C}_2\mathsf{H}_2, \\ \clubsuit & \mathsf{C}_2\mathsf{H}_4, \mathsf{C}_2\mathsf{H}_6, \mathsf{CH}_3\mathsf{OH}, \\ \mathsf{HCN}, \mathsf{CH}_3\mathsf{COOH}, \\ \mathsf{CH}_2\mathsf{O}_2 \text{ and } \mathsf{N}_2\mathsf{O} \end{array}$

- $ER_{i/CO}$: Emission ratio (ER) of species i to the reference species (CO in this work)
- *MW_i* : Molecular weight of species i
- MW_{CO} : Molecular weights of CO (28.01 g mol⁻¹)

 EF_{CO} : EF of CO

Carbon balance ap

 $EF_i = F_c \cdot 1000 \ (g$

Emission Factor (EF, g[.]kg⁻¹)

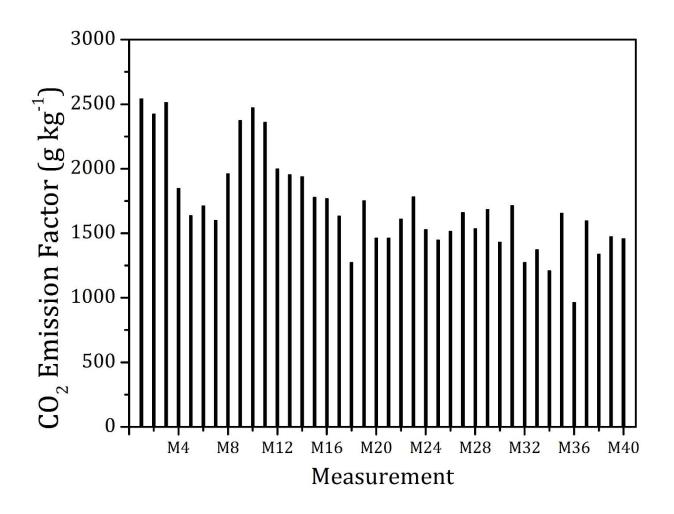
 F_c :Carbon content of th MM_i :Molar mass of specie12 :The atomic mass of of C_i :Number of moles of C_T :Total number of mole

mass of species emitted mass of dry fuel consumed

$ER_{i/CO} = \frac{[i] - [i]_{back}}{[CO] - [CO]_{bo}}$

 $ER_{i/CO}$:Emission ratio (
MW_i: MW_i :Molecular weight MW_{CO} :Molecular weight EF_{CO} :EF of CO

Atmospheric chemistry modelling


Carbon budget calculations

\Rightarrow CO₂ and CO

of species i and j ms in species j; species emitted by the fire

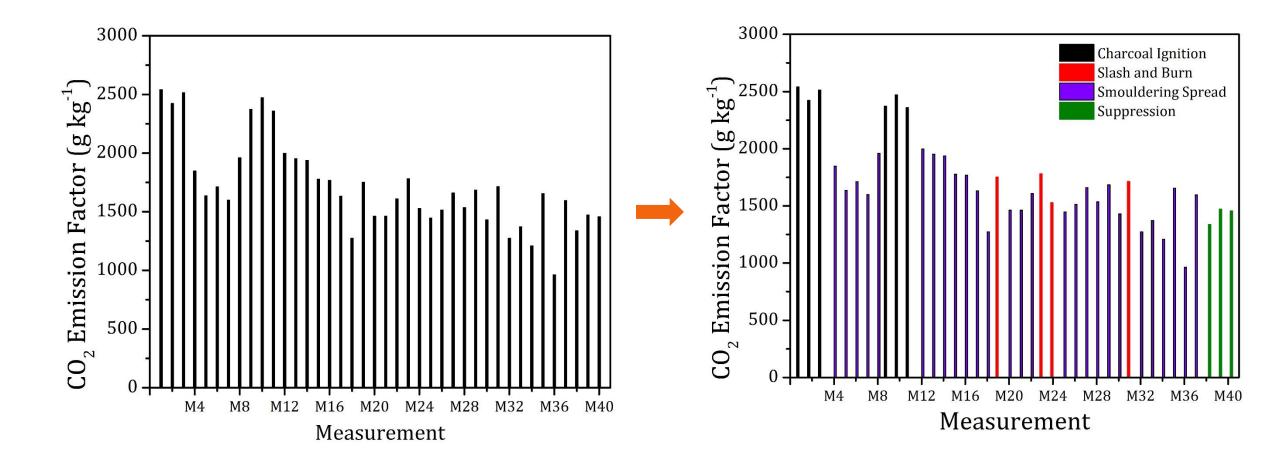
 $_{4}^{4}$, NH₃, C₂H₂, I₄, C₂H₆, CH₃OH, N, CH₃COOH, 2O₂ and N₂O

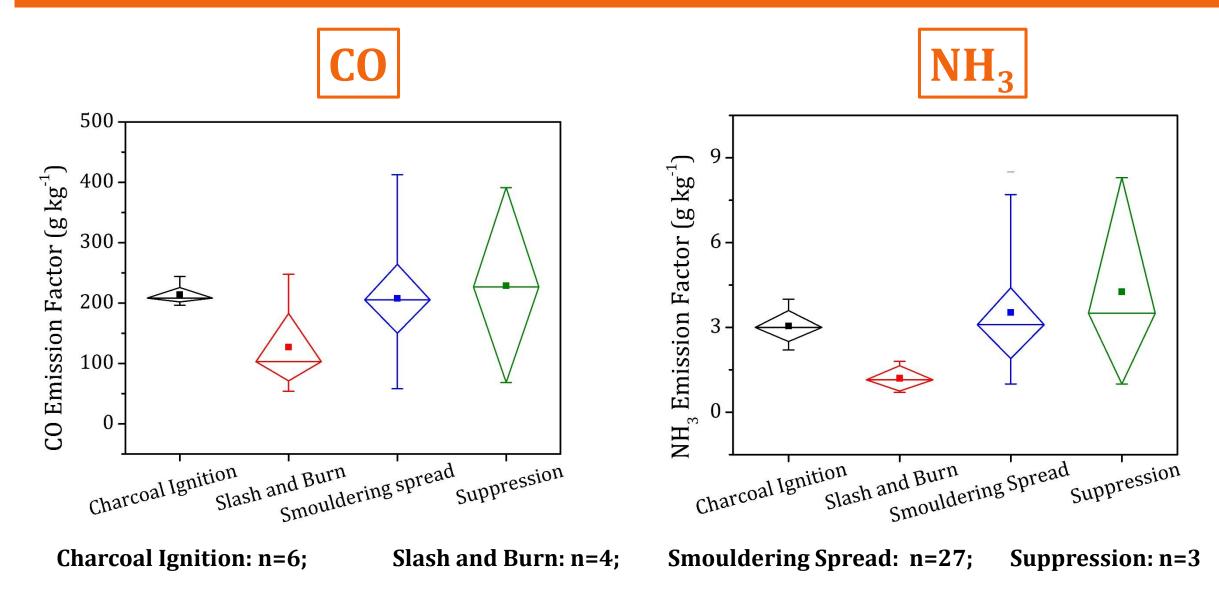
40 fire plumes measured, 9000+ gas spectrums recorded

- Fire-plume averaged emission factor
- Substantial inter-plume variability
- Classification needed

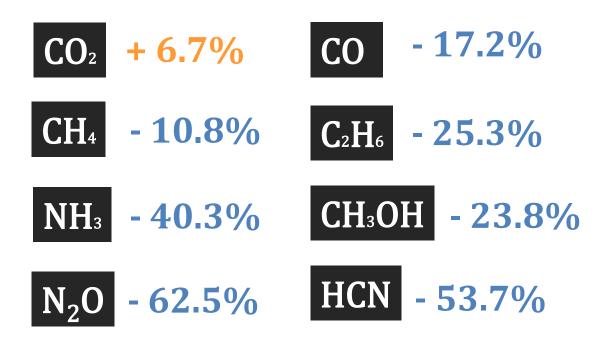
Measurement Number	Date	Field Day	Ambient Pressure (<u>mb</u>)	Temperature (°C)	Humidity (%)	Wind Speed (m/s)	Rain Rate (mm/h)	General Description ^a	Location j	Path Length
M1	19/08	6	1008.8	33.1-34.5	51-60	1.5-2.3	0	Charcoal Ignition	P1S	10.5
M2	19/08	6	1006.8	33.7-33.9	54-56	1.28	0	Charcoal Ignition	P1S	10.5
M3	19/08	6	1006.5	32.4-33.5	54-60	1.08-1.59	0	Charcoal Ignition	P1S	10.5
M4	20/08	7	1008.2	30.1-31.2	68-72	1.59-1.8	0	Smouldering ^b	P1S	10.5
M5	20/08	7	1007.5	32.2-32.4	62-65	2.3-2.4	0	Smouldering	P1S	10.5
M6	20/08	7	1007.1	32.9-34.0	52-60	1.38-2.1	0	Smouldering	P1S	10.5
M7	20/08	7	1005.6	31.2-31.8	64-76	0.8-1.4	0	Smouldering	P1S	10.5
M8	21/08	8	1009.0	28.7-30.8	69-78	0.8-1.8	0	Smouldering	P1S	10
M9	21/08	8	1006.5	32.9-33.2	59-61	2.1-2.7	0	Charcoal Ignition	P1S	10
M10	21/08	8	1005.8	33.1-34.8	52-60	1.3-2.1	0	Charcoal Ignition	P1S	10
M11	21/08	8	1004.3	30.4-31.8	68-80	0-0.6	0	Charcoal Ignition	P1S	10
M12	22/08	9	1009.4	28.7-29.5	69-72	1.8	0	Smouldering	P1S	10.5
M38	29/08	16	1008.6	32.8-33.3	54-60	1.1-1.3	0	Suppression (Water Spray)	P2C	13
M39	29/08	16	1006.3	31.7-33.6	54-61	1.3-1.8	0	Suppression (Injection)	P1S	11.5
M40	29/08	16	1005.8	30.7-31.2	66-69	1.3-2.1	0	Suppression (Water Spray)	P1N	13.5

Life-cycle of emissions from tropical peatland fire



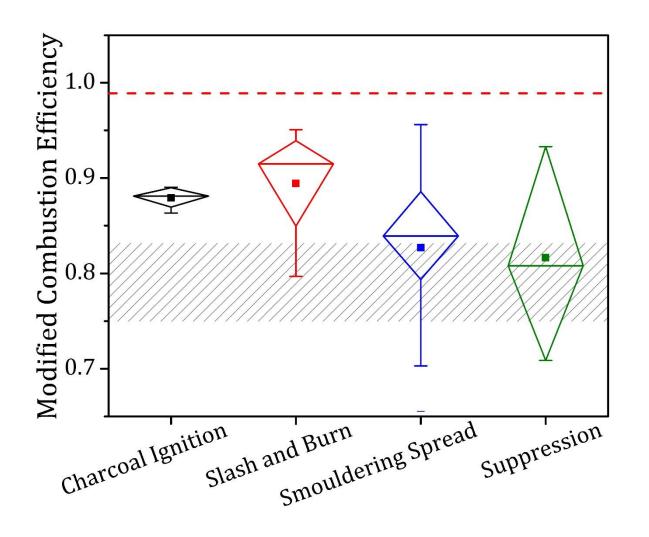


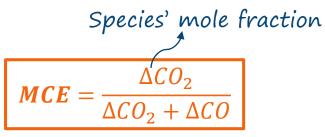
Life-cycle Emission Factor of Peatland Fire



Emission Factor from Different Fire Stages

Influence of Rain on Fire Emission Factor


Compared to when it is not rainy:



Measurement conducted during a heavy rain (32.3 mm/h)

Modified Combustion Efficiency (MCE)

- Combustion regime indicator
- Remote Sensing & Atmospheric Science

"MCE-indicated fire regimes" vs. real fire regimes

LARGE CONTRADICTIONS

MCE is highly sensitive to unknown field variables

Conclusion

- Field-scale controlled tropical peatland fire experiment in Sumatra, Indonesia
- **Life-cycle** fire emissions **from ignition to spread and suppression** from 40 fire smoke plume measurements were quantified using an open-path FTIR spectroscopy
- Gas emission factor vary among fire types and fire stages
- First investigation of the influence of local **weather** (e.g., rain) on emissions and the universality of **MCE** in the field
- Advanced understanding of peat fire emissions, haze mitigation strategy

Human Dimension

Imperial College

Universitas Indonesia London School of Economics

Universitas Riau

Imperial College

BPSDM Rokan Hilir Kementrian Dalam Negeri Universitas Riau Badan Restorasi Gambut

Field Spectroscopy Facility Natural Environment Research Council

EPSRC Engineering and Physical Sciences Research Council

Yuqi Hu et al. | EGU 2020

Temporal variability of greenhouse gas and reactive gas emission factors during a two-week-long tropical peatland experimental burn

Yuqi Hu¹, T.E.L. Smith², M.A. Santoso¹, H.M.F. Amin¹, E.G. Christensen¹, W. Cui¹, D.M.J. Purnomo¹, P. Pither³, Y.S. Nugroho³, G. Rein¹

Thank you!

EGU^{General} 2020 EGU2020: Sharing Geoscience Online, May 4-8, 2020