EVALUATING THE ROLE OF BIOMASS IN THE SORPTION OF FOUR UV-FILTERS

X. SANCHEZ-VILA; . P. RODRÍGUEZ-ESCALES

xavier.sanchez-vila@upc.edu; paula.rodriguez.escales@upc.edu

Grup d'Hidrologia Subterrània (GHS) Universitat Politècnica de Catalunya; Barcelona, Spain

Why do we have to study UV filters?

UV filters are used as **personal and care products** like sunscreens and cosmetics (perfumes, creams or shampoos), and in **a number of industrial** applications

Some of them are endocrine disruptors and have estrogenic activity

Why do we have to study UV filters?

UV filters are used as **personal and care products** like sunscreens and cosmetics (perfumes, creams or shampoos), and in **a number of industrial** applications

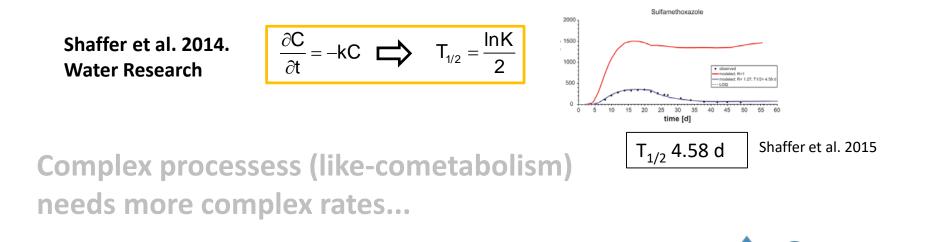
We're killing the world's coral reefs with SUNCREAM and mascara

SLAPPING on the sunscreen is killing off one of the planet's greatest natural spectacles.

By STUART WINTER

PUBLISHED: 12:27, Wed, Oct 21, 2015 | UPDATED: 13:46, Wed, Oct 21, 2015

They are also destroying coral reefs...

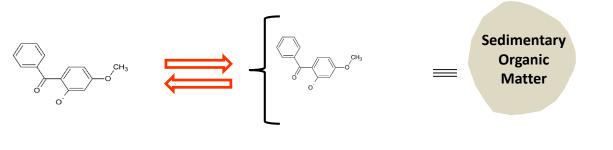


... and what is conditioning their fate in the subsurface?

The fate of UV filters in subsurface is governed by **degradation** and **sorption** processes

Degradation processes:

UV-filters are **recalcitrant compounds** that are degraded under **co-metabolic** processes in the presence of more labile compounds. Most of current models of **degradation of EOCs** only focus on apparent processes


DE CATALUNY

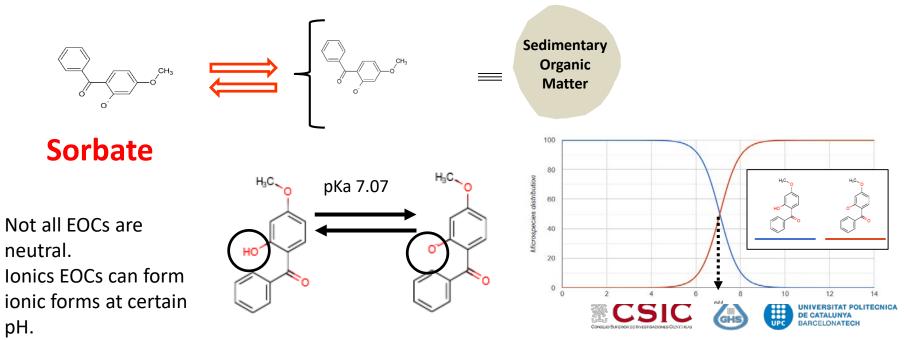
... and what is conditioning their fate in the subsurface?

The fate of UV filters in subsurface is governed by **degradation** and **sorption** processes

Sorption processes:

Sorption is also modelled as a phenomenological process...

It is not as simple....

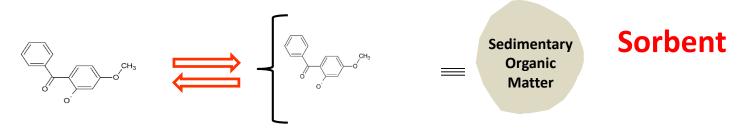

... and what is conditioning their fate in the subsurface?

The fate of UV filters in subsurface is governed by **degradation** and **sorption** processes

Sorption processes:

2

Sorption is also modelled as a phenomenological process...



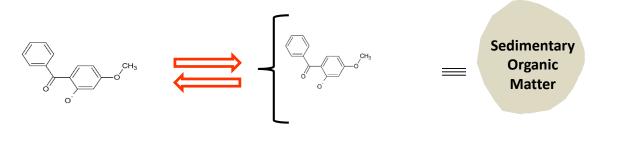
... and what is conditioning their fate in the subsurface?

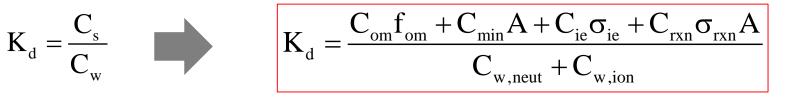
The fate of UV filters in subsurface is governed by **degradation** and **sorption** processes

Sorption processes:

Sorption is also modelled as a phenomenological process...

- Organic matter is the most important surface, but not the only one... mineral surfaces can act as sorbents
- What are the real processes or sorption?

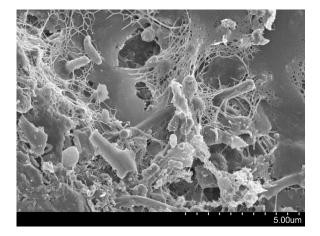



... and what is conditioning their fate in the subsurface?

The fate of UV filters in subsurface is governed by **degradation** and **sorption** processes

Sorption processes:

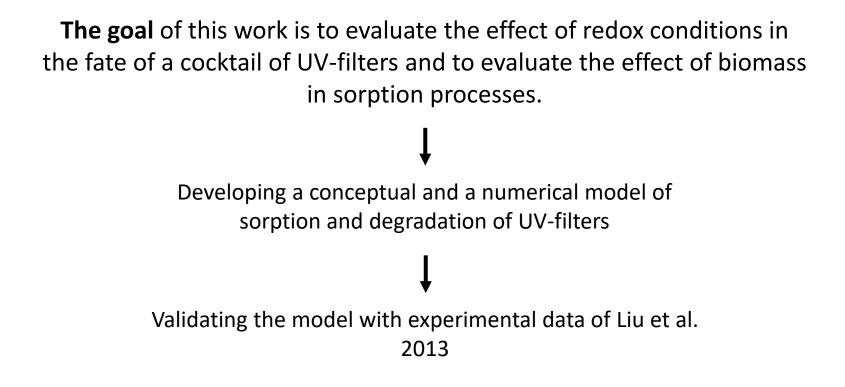
Sorption is also modelled as a phenomenological process...


...what is **solid organic matter** in an aquifer?

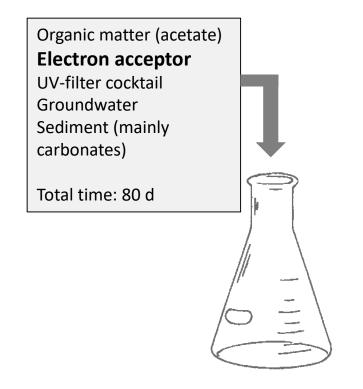
Sedimentary organic matter

- It is the traditional SOM (0.01-0.1)
- Normally, it is recalcitrant.

Biomass


 Not important if aquifers are not biologically active
Biomass can be an important sorbent → biofilm formation (e.g. during Managed Aquifer Recharge, bioremediation...)

MOTIVATION

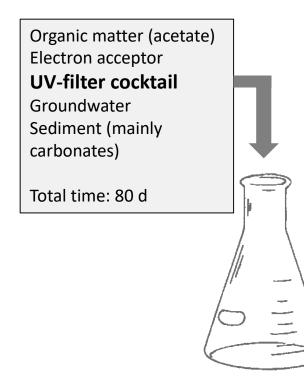

EXPERIMENTS

EXPERIMENTS

Liu et al (2013) performed a set of experiments evaluating the **degradation of a cocktail of UV-filters** in different redox conditions. They measured the temporal evolution of water and solid concentrations.

AEROBIC CONDITIONS

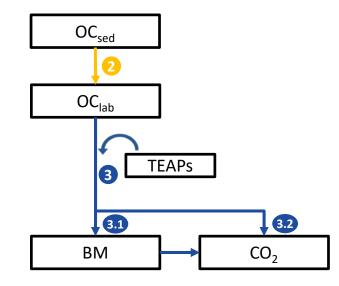
ANAEROBIC CONDITIONS


Sulfate-reducing conditions

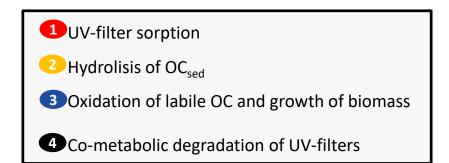
EXPERIMENTS

Liu et al (2013) performed a set of experiments evaluating the **degradation of a cocktail of UV-filters** in different redox conditions. They measured the temporal evolution of water and solid concentrations.

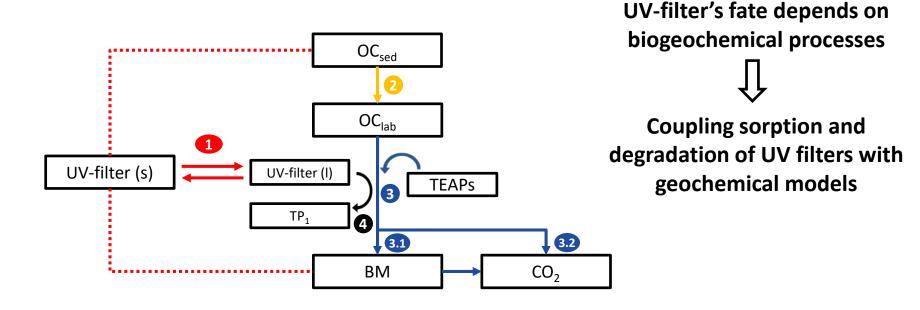
		рКа	logD _{ow}
Benzophenone-3	врз 🤇	7.07	3.13
Octyl 4-methoxycinnamatte	ОМС	Neutral	5.38
Octocrylene	OC	Neutral	6.78
2-(3-t-butyl-2-hydroxy-5- methylphenyl)5-chloro benzotriazole	UVA- 326	10.08	5.33
2-(2'-hydroxy-5'-octylphenyl)- benzotriazole	UVA- 329	9.30	5.9

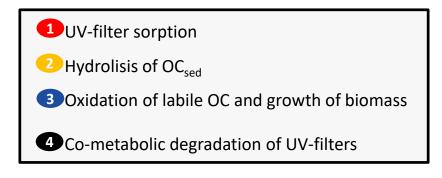


CONCEPTUAL AND NUMERICAL MODELS



CONCEPTUAL MODEL


OC_{sed} Sedimentary organic carbon
OC_{lab} Labile organic carbón
TP Transformation product
TEAPs Electron Acceptor
BM Biomass

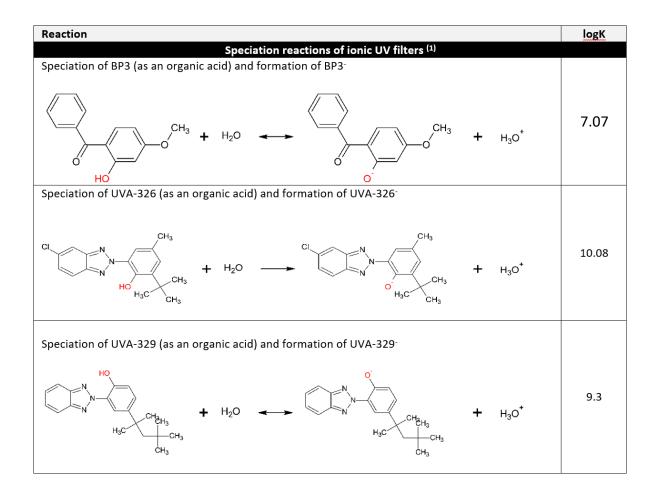


CONCEPTUAL MODEL

OC_{sed} Sedimentary organic carbon
OC_{lab} Labile organic carbón
TP Transformation product
TEAPs Electron Acceptor
BM Biomass

1. Extension of the geochemical database:

- 1. incorporation of the ionic UV-filters into the geochemical speciation and interaction with pH
- 2. incorporation of sorption reactions with SOM and with biomass


2. Construction of biogeochemical modeling

3. <u>Construction of co-metabolic degradation model coupled to biogeochemical</u> processes

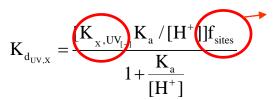
Extension of the geochemical database: incorporation of the ionic UV-filters into the geochemical speciation and interaction with pH

Extension of the geochemical database: incorporation of sorption reactions with SOM and with biomass

$$K_{d_{UV,TOT}} = \sum_{j=1}^{j} \sum_{i=1}^{i} K_{d_{i,j}}$$

where "i" is referred to the different sorbents (1=SOM and 2=biomass), and "j" to the different form of the UVs (1=neutral and 2=ionic form).

Sedimentary Organic Matter:


9

Extension of the geochemical database: incorporation of sorption reactions with SOM and with biomass

Reaction	logK ⁽¹⁾]	
Sorption of ionic UV filters to SOM ⁽²⁾			
$BP3 + \equiv SOM \leftrightarrow BP3 \equiv SOM$	-97.4736]	Experimentally
$OMC + \equiv SOM \leftrightarrow OMC \equiv SOM$	-96.6744		determined in abiotic experiments (only SOM)
$OC+ \equiv SOM \leftrightarrow OC \equiv SOM$	-96.4540		
UVA-326 + \equiv SOM \leftrightarrow UVA-326 \equiv SOM	-96.6803]	
UVA-329 + \equiv SOM \leftrightarrow UVA-329 \equiv SOM	-96.6187]	
Sorption of ionic UV filters to Biomass (X) ⁽³⁾			
$BP3^- + \equiv X \leftrightarrow BP3^- \equiv X$	Fitted		
$UVA-326^{-}+\equiv X \leftrightarrow UVA-326^{-}\equiv X$	Fitted]	
UVA-329 ⁻ + \equiv SOM \leftrightarrow UVA-329 ⁻ \equiv SOM	Fitted]/	

It was assumed 1 (all biomass surface acts as a sorbent)

Co-metabolic degradation: coupling geochemical processes with UV filters degradation

Degradation of labile organic carbon:

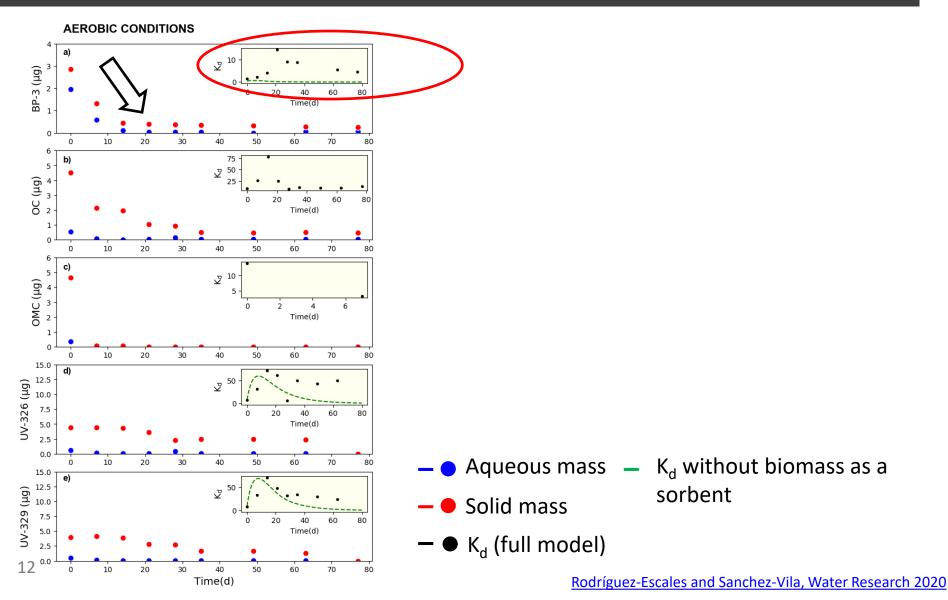
$$r_{ED} = -k_{max} \frac{[ED]}{[ED] + K_{S,ED}} \frac{[EA]}{[EA] + K_{S,EA}} [X]$$
$$r_{EA} = Qr_{ED} - Sb[X]$$
$$r_{X} = -Y_{h}r_{ED} - b[X]$$

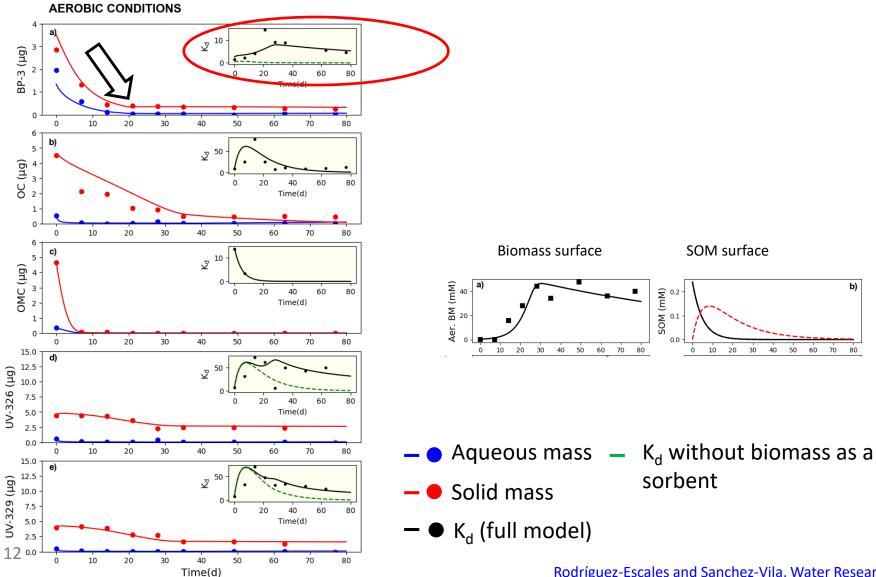
Release of labile organic carbon from Sedimentary Organic Matter:

 $r_{DOC} = -k_{max}[SOM]$

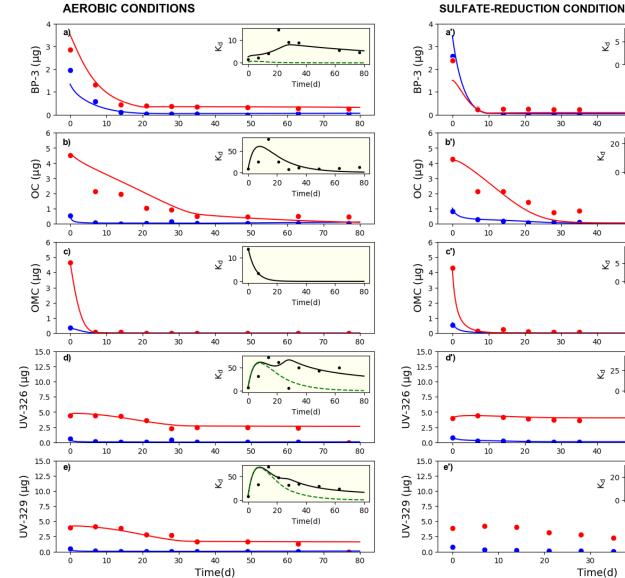
UV filter degradation coupled to oxidation of organic carbon:

 $r_j = -C_j k_{j,i}F_i$ j = BP3, OMC, OC, UV326, UV329





Modeling results: evolutoin of UV filters in water and solid surfaces



Modeling results: evolutoin of UV filters in water and solid surfaces

Rodríguez-Escales and Sanchez-Vila, Water Research 2020

Modeling results: evolutoin of UV filters in water and solid surfaces

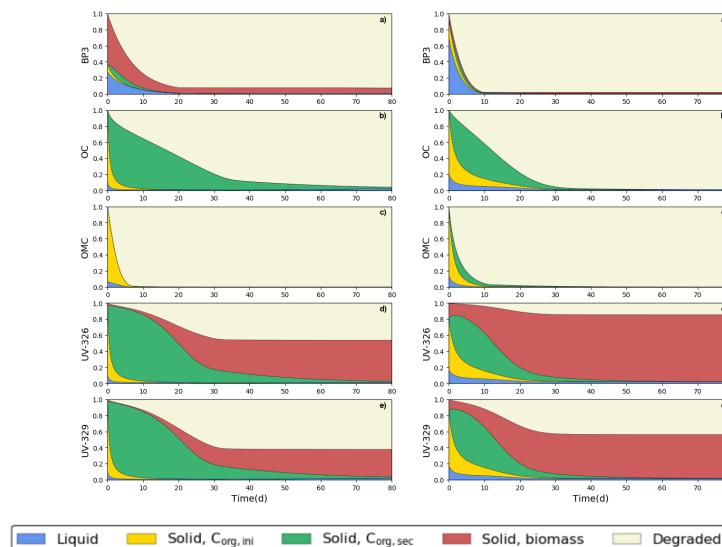
SULFATE-REDUCTION CONDITIONS

Time(d)

Time(d)

Time(d)

Time(d)


Time(d)

Rodríguez-Escales and Sanchez-Vila, Water Research 2020

Effect of redox conditions in the fate of UV filters

AEROBIC CONDITIONS

Rodríguez-Escales and Sanchez-Vila, Water Research 2020

a')

80

80

80

80

80

e')

ď)

c')

b')

70

70

70

70

70

SULFATE-REDUCING CONDITIONS

CONCLUSIONS

CONCLUSIONS

- 1. We have developed a geochemical model for UV filters, that considers cometabolic degradation and sorption to two different pools of sorbents: sedimentary organic carbon and biomass.
- 2. In this work we have demonstrated that **biomass can act as an important sorbent for ionic UV filters** (BP-3, UV-326 and UV-329) in porous media.
- 3. We further conclude that redox conditions, by themselves, do not condition the fate of UV filters (similar degradation constants). Nevertheless, redox conditions affect the biomass growth, showing a much higher growth of aerobic biomass than anaerobic one, and also modifying the pH.

More information is available in Rodríguez-Escales et al. 2020

EVALUATING THE ROLE OF BIOMASS IN THE SORPTION OF FOUR UV-FILTERS

X. SANCHEZ-VILA; . P. RODRÍGUEZ-ESCALES

xavier.sanchez-vila@upc.edu; paula.rodriguez.escales@upc.edu

Grup d'Hidrologia Subterrània (GHS) Universitat Politècnica de Catalunya; Barcelona, Spain

